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Detection of Obstacles in Monocular Image Sequences

Preface

This research was initiated as a part of the Synthetic Vision System (SVS) project for the

development of a High Speed Civil Transport (HSCT) aircraft at NASA Ames Research

Center. Primary goal of the research reported here is to develop image analysis algorithms

to detect the runways/taxiways and obstacles in monocular image sequences obtained

from two types of sensors, a Passive Millimeter Wave (PMMW) sensor and a video

camera. The report is divided into two parts. The first part of this report aims at

developing a model-based approach for detecting runways/taxiways and objects on the

runway from a sequence of images obtained from a moving PMMW sensor. An

approximate runway model and the position information of the camera provided by the

Global Positioning System (GPS) is used to define the region of interest to search for

image features corresponding to the runway markers. Once the runway is identified, a

histogram-based thresholding is used to detect obstacles on and outside the runway. The

second part addresses the problem of detection of objects in monocular image sequences

obtained from an on-board video camera. A recursive motion-based segmentation

algorithm based on planar motion model is used. The background motion due to camera is
identified as the dominant motion and the outliers which do not follow this motion are

identified as obstacles.
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Abstract

The ability to detect and locate runways/taxiways and obstacles in images captured using

on-board sensors is an essential first step in the automation of low-altitude flight, landing,

takeoff, and taxiing phase of aircraft navigation. Automation of these functions under

different weather and lighting situations, can be facilitated by using sensors of different

modalities. An aircraft-based Synthetic Vision System (SVS), with sensors of different

modalities mounted on-board, complements the current ground-based systems in functions

such as detection and prevention of potential runway collisions, airport surface navigation,

and landing and takeoff in all weather conditions.

In this report, we address the problem of detection of objects in monocular image

sequences obtained from two types of sensors, a Passive Millimeter Wave (PMMW)

sensor and a video camera mounted on-board a landing aircraft. Since the sensors differ in

their spatial resolution, and the quality of the images obtained using these sensors is not

the same, different approaches are used for detecting obstacles depending on the sensor

type. These approaches are described separately in two parts of this report.

The goal of the first part of the report is to develop a method for detecting

runways/taxiways and objects on the runway in a sequence of images obtained from a

moving PMMW sensor. Since the sensor resolution is low and the image quality is very

poor, we propose a model-based approach for detecting runways/taxiways. We use the

approximate runway model and the position information of the camera provided by the

Global Positioning System (GPS) to define regions of interest in the image plane to search

for the image features corresponding to the runway markers. Once the runway region is

identified, we use histogram-based thresholding to detect obstacles on the runway and

regions outside the runway. This algorithm is tested using image sequences simulated from

a single real PMMW image.

The camera position information provided by the GPS is not accurate. An

alternative is to estimate the camera position using image-based features, such as points
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and lines. The accuracy of such estimates, however, depends on the resolution of the

sensor and the position of the sensor in 3-D. We propose an analytical model to compute

the accuracy of the estimated camera position and develop equations for accuracy in terms

of sensor resolution and the sensor position in 3-D. Analytical results obtained using this

model for three different sensors at six different positions of the sensor are presented. We

also propose a new algorithmic approach for computing the error in the estimated camera

pose due to image plane quantization. Such theoretical analysis is useful in deciding the

required camera resolution for use in the design of SVS for navigation.

The second part of this report addresses the problem of detection of objects in

monocular image sequences obtained from a video camera mounted on-board a landing

aircraft. First, the optical flow is computed at coruer-like feature points detected on the

image using a corner detector. We assume that the runway is either planar or is piecewise

planar and propose a recursive motion-based segmentation algorithm based on the planar

motion model for segmenting flow vectors into separate regions. Model parameters are

recovered for each of the region. The background motion due to camera is identified as

the dominant motion and the outliers are identified as due to the obstacles. Various stages

of the algorithm were tested using both synthetic and real image sequences obtained from

actual flight test.

Line features are considered to be prominent and more reliable than point features.

In this report we have explored the use of line features for two purposes: (1) estimating

the runway plane parameter using runway markers, and (2) tracking and estimating the

position and velocity of the ground-based obstacles using object lines. The algorithm was

tested using real image sequences. Since the angle between the projecting planes (i.e., the

plane containing the runway marker and the corresponding line segment in the image

plane) for a given line segment in two frames was too small to resolve, good estimate for

the plane parameter could not be obtained. Though line features were tracked, end points

could not be properly located and hence good estimate for the motion of the object could

not be obtained.
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1 Introduction

The ability to detect and locate runways/taxiways and obstacles in images captured using

on-board sensors is an essential first step in the automation of low altitude flight, landing,

takeoff and taxiing phase of navigation of aircrafts. At present the autopilot system nav-

igates the aircraft up to a certain height (depending on the autopilot system installed on

the aircraft and the capability of the ground systems such as Instrument Landing System

(ILS), Microwave Landing System (MLS) etc.) above the runway during landing after which

the human pilot assumes control of the aircraft. At this point, the pilot makes decisions

about landing depending on the external visibility. The landing is often aborted or delayed

if the visibility is poor. Crew members rely on a sophisticated combination and fusion of

information from multiple sensors in order to accomplish their mission under conditions of

darkness, reduced visibility and bad weather. Hence, there is a strong need for an aircraft-

based Synthetic Vision System (SVS) to complement the ground-based systems in various

functions such as detection and prevention of potential runway collisions, airport surface

navigation, and landing and takeoff in all weather conditions [17, 107].

Implementing an SVS would upgrade the capabilities of over 1100 US airports to CAT

IIIa 1 or better, which are currently equipped with CAT II 2 or CAT 13 capability [24, 107].

Another motivating factor for the development of a SVS is the design of a supersonic

1The minimum vertical visibility ceiling is 12-35 feet with runway visual range of 100-300 meters. A fully

automatic landing system with automatic flare and a failure survival autopilot system with a probability of
catastrophic failure leas than 10 -T per hour is required. Pilot assumes control at touchdown.

2The minimum required vertical visibility ceiling is 100 feet and runway visual range is 400 meters. A

fail passive autopilot is required. Pilot takes over landing at a height of 100 feet.
3There is sufficient vertical visibility at a height of 200 feet with a runway visual range of at least

800 meters for the pilot to carry out a safe landing under manual control. A simplex autopilot system is

acceptable. Pilot assumes control at a height of 200 feet.



commercial aircraft. It is argued that a High Speed Civil Transport (HSCT) without

a Concorde-like drooped nose could result in significant reduction in the gross takeoff

weight[107, 116]. Without a drooped nose, the cockpit has limited external visibility and

the pilot has to depend on an SVS which derives information from combination of sensors.

The SVS is envisioned to be equipped with a Passive Milli-Meter Wave (PMMW) sensor

in addition to the infra-red and video cameras. A PMMW sensor is designed to be operated

at lower frequencies (e.g., 94 GHz), at which point the energy attenuation due to fog is known

to be at a minimum, thus providing the ability to see through fog [132]. Outputs of these

sensors will be integrated with aircraft position and orientation information (yaw, pitch, and

roll) provided by the Global Positioning System (GPS) and the Inertial Navigation System

(INS), and an airport geometry database to detect the runways/taxiways and obstacles,

locate the aircraft within the airport, determine potential conflicts, issue advisories, and

sound cockpit alarms.

In this research, we address the problem of detection of ground-based obstacles in monoc-

ular image sequences obtained from on-board sensors for use in an SVS. Any object in the

sensor's field of view is considered to be an obstacle. Most of the algorithms available in the

literature for obstacle detection are developed and evaluated for applications in robotics,

road vehicle navigation, and intelligent vehicle and highway systems (IVHS). These appli-

cations use high resolution and high quality images obtained using a video camera. Stereo

images are often used to estimate the distance to an obstacle. PMMW sensor images, how-

ever, axe of low resolution and poor quality. The use of stereo is not currently recommended

for SVS due to the difficulty with having such a system with a large enough base distance

to estimate the 3D position accurately. Hence, there is a strong need to design and evaluate



computervision algorithmsfor usein SVSfor obstacledetectionusingmonocularimage

sequences.

1.1 Overview

This report is about detection of objects in monocular image sequences obtained from a

moving sensor. The initial goal of this research was to design a computer vision system to

analyze image sequences obtained from a Passive Millimeter Wave imaging system mounted

on-board the aircraft to detect runways/taxiways and objects on the runway. Although

PMMW sensors have good response in fog, their spatial resolution and radiometric contrast

are very low, and the quality of the images obtained using these sensors is poor. However,

we have additional data in the form of the airport model and approximate position and

orientation of aircraft, to guide our system to locate objects in the low resolution image.

The position of the aircraft is available from the GPS, and the orientation of the aircraft

is provided by the INS. The data from these instruments are known only up to a certain

accuracy. For example, GPS data are updated once every second and it is likely that a few

such updates could be missed, potentially causing camera position data to be as much as

a few hundred feet off. Knowledge of the camera motion information from the GPS/INS

is the key to detecting objects and estimating their position and velocity. Any inaccuracy

in this information could result in an error in the estimated position and velocity of the

objects.

An alternate approach to obtain an improved estimate of camera position is to use

objects with known world coordinates and their position in the image plane (e.g., inter-

sections of runway/taxiways, corners of buildings, etc.). This requires an analytical study



of the relationship among the camera parameters, the resolution of the images, and the

distances between the aircraft and objects. We propose an analytical model to compute the

accuracy of the estimated camera position and develop equations for accuracy in terms of

sensor resolution and sensor position in 3-D. We also propose a new algorithmic approach

for computing error in the estimated camera pose due to plane quantization. Such theoret-

ical analysis are useful in deciding the required camera resolution for use in the design of

SVS for navigation.

Initial experiments were conducted using a test image obtained from a single pixel

camera located at a fixed point in space and then mechanically scanning it to obtain a

50 x 150 pixel image. Using the camera position information and the airport model, a

sequence of 30 frames was simulated for this experiment. Although results obtained using

our algorithms on these images were encouraging, further research using PMMW sensor

could not be continued for the following reasons:

• A practical camera with an array of pixels could not be developed,

• It is not clear at this time whether such a sensor could be safely mounted on-board

an aircraft, and

• Camera pose estimation from image-based features using low resolution PMMW sen-

sor images was not better than the position information provided by the GPS.

Hence, the remaining part of this research is focused on detecting independently moving

objects in monocular images obtained by a moving video camera. In this work, we assume

that the objects were moving on a background which is either planar or is piecewise planar.

We describe a new recursive motion-based segmentation algorithm for segmenting images
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into regionscorrespondingto independently moving objects and estimating their motion

parameters.

Apparent motion of brightness patterns in images, called the optical flow, is computed

first. Since the camera is moving, background (i.e., the runway) appears to be moving in

the image. Using knowledge of camera motion, flow vectors resulting from the runway are

grouped based on the hypothesis that they are resulting from a single planar surface in

motion Planar surface motion model parameters for the runway is computed using a least

square model fitting approach. Flow vectors violating the planar motion model are detected

as outliers and are identified as obstacles.

Line features are considered to be prominent and more reliable than point features. Two

types of line features are detected in image sequences obtained from a camera mounted on-

board a landing aircraft - - line features due to the runway markers and line features due

to the 3-D objects in the scene. Runway plane parameters are computed by matching at

least two line features in two frames. Using the known camera motion information and

the estimated plane parameters, line features in the image corresponding to the 3°D object

in motion are tracked. A recursive Kalman filter-based approach is used to track the line

features and estimate the position and velocity of the object in 3-D assuming that the object

is moving on the planar runway.

This research addresses many difficult problems in computer vision, such as motion-

based segmentation, feature tracking, dynamic scene analysis, etc. In the past, researchers

solved the problem of motion-based segmentation using the Hough method, image regis-

tration using digital warping and other statistical methods. The digital warping approach

requires knowledge of the warping parameters. It is mainly used to compensate for the
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dominantmotion; all featuresviolatingthe dominantmotionare detectedas outliersor

obstacles.This resultsin warpingnoisein additionto the digitizationnoise.The Hough

methodcanbeusedto segmentandestimatemultiplemotionssimultaneously,althoughit is

computationallyexpensiveandits successandaccuracyaremainlydependentonknowledge

of the rangeandresolutionof the parameterspace.

Unlike the Hough-basedapproach,our approachdoesnot requireprior knowledgeof

therangeof parametervaluesfor themotionmodel.Instead,parametervaluesaxedirectly

estimated.Thisestimationisrefinedby removingthe outliersat everyiteration. Usingour

algorithm,basicsegmentationcanbedonewithout knowledgeof the motionparameters,

as opposedto the warpingtechnique,whichrequiresthe cameramotion parametersto

computethewarpingmatrix. Todealwith thecomputationof multiplemotions,wepropose

incorporationof split and mergetechniqueto the motion-basedsegmentationalgorithm.

The algorithmsdevelopedin this workhavebeentestedusingboth real andsynthetic

images.The syntheticimagesweregeneratedby the programdevelopedfor this report,

aswell as a simulationsoftwaredevelopedat the NASAAmesResearchCenter. Several

real imagesequencesusedin this workwereobtainedby sensorsmountedon-boarda land-

ing aircraft, and wereprovidedby the NASA AmesResearchCenterand NASA Langley

ResearchCenter.

1.2 Review of the Literature on Obstacle Detection Systems for Naviga-

tion

In recent years, considerable effort has been put into evaluating the feasibility of computer

vision algorithms for these tasks. This section gives a brief overview of research work done



at NASA and other institutions in the area of obstacle detection for navigation.

The detection of runway lines has been attempted in [55, 77] using properties specific

to the runway (e.g., the use of parallel lines). Work described in [30] is based on a model of

the runway where the camera image is compared with the expected runway image obtained

by generating an image using the known position of the camera and the airport runway

model database. On-board INS and GPS can provide reasonably good position estimation

during flight, but they axe not considered accurate enough to permit automatic landing

[101]. Image-based features such as points, lines, etc., are used to determine the position of

a sensor in [4, 61, 70]. A number of authors have attempted to determine the position of a

sensor from the captured image [4, 61, 69].

Most approaches have been based on some model of environment that is expected by the

sensor [5, 60, 73]. The position of the sensor is computed from the actual sensor input and

some perceived difference between the actual and the expected sensor input. The choice of

a reasonable model for generating the runway scene, as well as the choice of a cost function

defining the goodness of fit, axe crucial to the accuracy and speed of convergence of such an

algorithm. In [102] three different models - - namely edge-based model, area-based model,

and texture-based model - - are used to compare the viewed scene with an expected scene.

A cost function quantifying the matching of the expected image with the camera image is

minimized to obtain more accurate camera position.

In principle, the problem of obstacle detection with a moving camera can be completely

solved if either the range map is supplied for all points in front of the camera, or the

image acquired using the sensor is segmented and recognized into constituent parts (i.e.,

sky, runways, buildings, etc.). A Kalman filter-based recursive estimation procedure for



estimatingrangeto featurepointsin the imageis explainedin [95,108,110,111]. Image

regionsof size11x 11pixelswith highvariancearedetectedasfeatures.Theinitial range

of thesefeaturesis computedusingmotionstereo.Thefeaturepositionsin the subsequent

framesarepredicted,and the estimates of ranges to the feature points are refined using a

Kalman filter. The algorithm is tested and the results are reported for both indoor images

and images acquired from the actual flight test. In this work, all obstacles are assumed to

be stationary. The algorithm was modified to handle stereo images in [97]. Motion-based

and stereo-based algorithms for passive range estimation are compared in [109].

The range estimation procedure described in [118] uses a simple incremental weighted

least squares method for estimating the position of stationary objects using known camera

state parameters. This algorithm extends the epipolar plane image analysis described in

[14, 8] to general camera motion by assuming the camera motion to be piecewise linear. In

[120] an optical flow-based approach is used for detecting independently moving objects.

Image regions corresponding to the independently moving objects are segmented from the

background by applying the constraint filtering originally proposed by Nelson [87] on the

optical flow computed from the initial few frames of the sequence. These detected regions

are tracked over subsequent frames using a model-based tracking algorithm described in

[56]. Position and velocity of the moving objects in the world coordinate is estimated using

an extended Kalman filter.

The obstacle detection algorithm described in [115, 44] assumes that the obstacle-free

runway is a planar surface and computes the residual flow by compensating for the camera

motion using image warping. The algorithm is tested using images obtained during a

helicopter flight.
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1.3 Organization

This section provided a brief introduction to the research problem and objectives addressed

in this report. Even though this report is based on the main theme of object detection

in monocular image sequences, the total research dealt with processing images obtained

from two different sensors. Detecting obstacles in images obtained from sensors of different

modalities require different processing techniques. The next two sections explain our work

using PMMW sensor images. Subsequent sections describe the work done using video image

sequences.

Section 2 describes the analytical model for computing the error in the position and

orientation of the camera estimated using image-based features. An analytical model is

described for an on-board sensor in terms of its position and orientation, and other sensor

internal parameters. Equations for error in camera _parameters are also derived. Three

sensors - - the Passive Millimeter Wave (PMMW) sensor, the Forward Looking Infrared

(FLIR) sensor, and the High Definition Television (HDTV) sensor - - are evaluated and

quantitative results are presented.

A model-based approach for detecting objects in a PMMW sensor image is described

in Section 3. Results were obtained using an image sequence obtained from a single pixel

camera provided by the NASA Langley Research Center. Since a practical PMMW sensor

array was not completely developed by NASA's commercial partner, we could not continue

using this sensor modality. The remaining sections of this report use video images.

Section 4 describes our motion-based segmentation algorithm for segmenting images

into regions corresponding to different motions and estimating their motion parameters.



An algorithmfor computingtheoptical flow from imagesequencesis described.A planar

motionmodelandalinearalgorithmfor recoveringthemodelparametersfrom optical flow

vectors are presented. A recursive algorithm for estimating single and multiple indepen-

dent motions is described. The results obtained using both synthetic and real images are

presented.

Algorithm for estimating the plane parameters using line features is described in Section

5. Details are given for a Kalman filter-based approach for tracking line features in the

image sequence and estimating the position and velocity of 3-D objects moving on a planar

runway. The feasibility of these methods was tested using real image sequences; the results

axe presented in this section. Section 6 contains a summary Of the entire research and

suggests future research topics.
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2 Sensor Sensitivity Evaluation and Calibration

A Synthetic Vision System for enhancing the pilot's ability to navigate and control the air-

craft during landing and taxiing operations uses an on-board airport database and images

acquired by external sensors such as millimeter wave, infrared and low light TV cameras.

Additional navigation information needed by the system is provided by the Inertial Naviga-

tion System (INS) and Global Positioning System (GPS). The data from these navigation

instruments are known only to a certain accuracy (depending upon the type of the instru-

ments used), and axe updated once every second. Since data from on-board instruments

are more accurate than the GPS-based data, they are useful for obtaining more accurate

camera position. An alternative approach is to use the 3-D location information of certain

landmarks such as intersection of runways/taxiways, corners of buildings and their corre-

sponding positions in the image to obtain a better estimate of the camera position. This

requires an analytical study of the relationship among the camera positional parameters

(i.e. position and orientation in 3-D), the sensor characteristics, and the relative distance

between the sensor and objects.

2.1 Sensor Positional Sensitivity Evaluation

Imaging is a process of mapping a large 3-D scene onto a small 2-D plane. This 2-D

image plane is quantized in both spatial directions to facilitate image processing by digital

computers. The limited resolution of the sensor requires that the entire scene be mapped

to an M × N array of points called pixels. Such an array being too small to adequately

represent the scene introduces significant amount of error into computations involving the

11



locationsof imagepointsandfeatures.Anothernaturaloutcomeof the imagingprocessis

the lossof depthinformationresultingfrom mappingof an infinite numberof pointson a

line-of-sightontoasinglepoint in the imageplane.As aresult,reconstructionof a sceneby

computingthe depthof scenepointsusingimage-basedfeaturesis a challengingproblem.

The inverseprocess,knownasthe cameracalibrationproblem,is to computethe camera

positionby triangulationbetweenknownscenepointsin theworldandtheir corresponding

positionsin the imageplane. Nearlyall of the methodsfor solvingthis problemrequire

only onemonocularimagewithspecialmarkswhichcanbeman-madepoint featuresor line

features[42,46,54,64,69,113].Theaccuracyof suchcomputationalapproaches,however,

dependsuponthe camerageometryandthe quantizationof the imageplane.

Most analysisfor obtainingthree-dimensionalpositioninformationof the scenepoints

arebasedon the triangulationsystem[13,76]. To computethe depth to a scenepoint,

triangulationmust be performedusing its projectiononto two images,capturedeither

simultaneously,by two camerasseparatedby a basedistance(asin the caseof binocular

stereo), or separately, by a single camera at two different positions (as in the case of motion

stereo). This requires computation of features in one image and a correspondence in the

other image. Assuming correct matches have already been found, the next step is to recover

the 3-D information using triangulation. The accuracy of such a computation depends on

the spatial quantization of the image plane.

Equations for calculating error in distance measurement between an object and a stereo

vision system established in [76] present a worst case error analysis, and show that the

percentage error in distance measurement is inversely proportional to the number of pixels

occupying the shift between the two images and directly proportional to the object dis-

12



tance.BlostienandHuang[13]havedevelopedequationsto determinethe probabilitythat

a certainestimateis within a specifiedtolerancegiventhe camerageometryof a stereo

setup. Error equationsdevelopedin [31,32] for determiningthe optimumline width for

visualnavigationof anautonomousmobilerobotgivethepercentageoferror for anysensor

geometry,line width, and error conditions. Even thoughtheir analysislookssomewhat

similar to our work,the basisfor their analysiswasmeasurementof line width.

In this research,weestimatedtheaircraftpositionbytrackingknownstaticscenepoints

in the imageplane. Sincethe accuracyof this estimationdependson varioussensorpa-

rameters,wewantedto developan analyticalmodelthat couldrelatethe accuracyof the

estimatedsensorpositionto thesensorpositionalparametersandattributesofthe captured

image.Thesensorpositionalparametersincluderange,crossrange,altitudeandpitch, roll,

and yawangles.Sensorimagingattributesincludethe numberof pixelsin the imageand

the opticalangularview (measuredin degrees).

Weassumea pin-holecameraand,therefore,ignorecameralensdistortion andoptical

non-linearities. We alsoassumethat the problemof featurecorrespondencewassolved

usingsomecorrespondencealgorithmandthat the correspondencewasaccurateto asingle

pixel. Hence,the analysisdoesnot dependon the type of algorithmusedfor establishing

featurecorrespondence.Any errorin computationwasbasicallydueto spatialquantization

of the imageplane. In this analysis,weprojectedthe imageplaneonto the ground,and

the pixel (p,q) in the image plane was modeled as a patch on the ground plane (ground

area represented by the pixel). We defined the sensitivity or the error in computation as

the minimum change in a camera parameter that would move a fixed ground point to the

next pixel in the image plane.
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2.1.1 Imaging Geometry

Throughout the analysis, for convenience, we assume that the sensor is located at the

aircraft's center of gravity. Hence, we can use the terms sensor position and aircraft position

interchangeably. We also neglect the effect of curvature of the earth.

The system of reference axis that forms the basis of the system of notations used to de-

scribe the position of the sensor is shown in Fig. 1. The figure shows an aircraft with three

mutually perpendicular axes (pitch, roll, and yaw) passing through the aircraft's center of

gravity. The position of the aircraft is defined with respect to the three mutually perpen-

dicular world coordinate axes X, Y, and Z. The image plane is assumed to be perpendicular

to the rolling axis, with its vertical and horizontal axes coinciding with the yawing and the

pitching axes of the airplane, respectively.

Fig. 2 shows an imaging situation during landing, where the aircraft is at (Xc, Yc, Zc),

with pitch angle 8, zero yaw, and zero roll angle. Let c_ = 90 - 8. The field of view of the
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cameraisdeterminedby twoviewingangles:Aa defined in the same plane as 0, and Af_ at

right angles to Aa. (Aa determines the vertical extent of the image and Aft its horizontal

extent.) Even though the image obtained by the sensor is always a rectangle, the ground

area captured by the sensor is a trapezoid ABCD whose side length and area depend on

Aa, A/3, and various other sensor parameters like position, orientation, etc. Note that a

pixel in the image plane corresponds to a patch on the ground plane. We refer to this as a

pixel-patch (See Fig. 3).

2.1.2 Sensitivity Analysis

Consider a point feature which has been detected at some pixel (p, q). Let the actual world

coordinates of this feature be (P, Q, 0). Since a pixel represents a patch on the ground, the

camera could change in its position by a certain amount while still retaining the image of the

feature at the same pixel (p, q). Hence, a camera pose estimation by passive triangulation

will always give the same camera pose for nearby camera positions, unless the change in

the camera position is large enough for the feature to be observed in the neighboring pixel.

We define this minimum change in camera displacement as the sensitivity of the camera.

Note that this is a measure of accuracy of camera position estimate and is a function of the

camera position, image size in number of pixels, angular resolution, and the pixel location

(p, q) in the image plane.

Let Nx and Ny represent the number of pixels in the vertical and horizontal directions,

respectively. The pixels are numbered --_,... 0,... -_ - 1 in the vertical direction and

-_ 0, N___ 1 in the horizontal direction. The rolling axis of the plane is assumed to
2 ' ...... 2

pass through the bottom right corner of the patch on the ground plane, which corresponds
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Figure 2: Image obtained by the sensor is projected towards the ground
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Figure 3: Ground area covered by the sensor. Each small trapezoid corresponds to a pixel

in the actual image

to the center pixel in the image plane. Other pixels are referenced in a similar manner.

The coordinates of the reference corner of the ground area covered by a pixel (p, q) can be

estimated by the following relations:

X = Xc + Zctan(a +p-_-)

Z_ A_
Y = Yc+ hc, tan(q-KT--)

cos(_ + p_)
(1)

For a non-zero rolling angle ¢, the ground coordinates (X', yI) which correspond to a pixel

(p, q) in the image plane are obtained with replacing (p, q) in the equation by (pr, q_), where

pr = pcos¢-qsin¢

q' = psin¢+qcos¢ (2)

Since a pixel-patch is referenced by the bottom right corner of the pixel, the other three

corners become the reference of its three neighboring pixel patches, as shown in Fig. 4.
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Figure 4: A pixel (p, q) projected towards the ground

Thus, the four corners of this pixel-patch (X_, Y/), i = 1, 2, 3, 4 are obtained by using Eq.

1, where (p, q) are replaced by (p',q'), such that

p_ = pi cos ¢ - qi sin ¢

!
qi = pi sin ¢ + qi cos ¢ (3)

where (Pl,ql)= (P, q), (P2,q2) --- (P+ 1,q), (P3, q3) -- (P+ 1,q+ 1), and (P4,q4) --- (P,q+ 1).

Eq. 1 gives the relationship between the camera parameters (Xc, Yc, Zc, O, ¢) and the

ground point corresponding to a pixel (p, q). We are now interested in computing the

sensitivity of the imagery sensor. This is defined as the minimum change in a camera

parameter that would move a fixed ground point to the next pixel in the image plane. We

obtain this by taking the partial derivative of X{ and Y{ with respect to the corresponding

parameter. For example,

Dxx = OX_ y OY_
OX'----_'Dx- = OXc (4)
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This derivationis anapproximationto the amountof change in X_ for unit change in

Xc. Thus, we estimate that the amount of change in Xc in order to change X{ to X_ or YI'

to Y_ (which define the corners of adjacent pixels) as

Sxo- ---' Dx_
(5)

Note that S Yxc = oc, as expected. Sensitivity with reference to other parameters is defined

in a similar manner. These are summarized in Table 1. In general, S_ stands for sensitivity

in the direction i due to the sensor positional parameter j computed at pixel (p, q) in the

image plane.

Sensor sensitivity is a function of various sensor parameters and sensor attitudes. Since

the sensor plane is inclined to the ground plane, the sensitivity varies in the vertical and

horizontal directions, along the sensor plane and, hence, is a function of pixel number (p, q).

Equivalently, the accuracy of estimation of sensor position using ground truth data is a

function of pixel position as well as other parameters. For a given range, the estimation

using features that are observed at the top half of the sensor are less accurate because of the

large ground area represented by these pixels. Also, for a given p, the accuracy decreases

as we move towards the border of the sensor in the horizontal direction. In summary, the

accuracy of estimation is a function of sensor characteristic and the ratio of the sensor view

angle to the number of pixels in the image.
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S Y
Y_

z_ S x
Zc

S Y
Zc

Sensor Sensitivity at (p, q)

2Zc sin(cos _b_)

cos(2a+ _ ((2p-{- 1) cos _b-2q sin ¢))+1

O0

Sensitivity at (0, 0) ¢ = 0

sin(_)
2Zc cos(2a+ _ )+ i

CO

oo

sin(2a+ _)

Table 1: Sensor positional sensitivity equations
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2.1.3 Quantitative Results and Discussion

The sensitivity analysis described in the previous section was applied to three different

sensors at six different positions. Characteristics of the sensors are given in Table 2. Sensi-

tivities SxXc, S_, and SzX, at the aim point (i.e., p = 0, q = 0) for various sensor positions

are plotted in Figures 5, 6, and 7, respectively. In all of the above cases, pitch angle

is -3.0 °, roll angle is 0 °, and cross range is 0 feet (typical values when an aircraft is ap-

proaching the runway for landing). Note that sXc is larger than Szr at (0, 0) and, hence, a

feature would move to the next horizontal pixel before it moves to the next vertical pixel.

Thus, only S x is important.Zc

As expected, the sensitivity is best for the sensor with the highest pixel resolution.

Sensitivity also improves as the sensor is moved closer to the ground. It becomes poor

for the features that are located at the far end of the vertical axis (top of the sensor i.e.,

for the objects that are located at the far end of the runway). As expected, the position

and velocity of the aircraft can be computed more accurately by knowing the position of

stationary objects on the ground that are closer to the aircraft.

The above results indicate that the accuracy of camera state estimation would be no

better than the GPS unless a high resolution sensor is employed. Note that these results

do not consider potential improvements that can be obtained by motion stereo techniques

using a large number of image frames, or by using more feature points than the required

minimum. In addition to being useful in sensor design, this analysis will also help us evaluate

the accuracy of camera state estimation by any algorithm that uses image-based features

that correspond to known scene points.
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Sensor Positional Parameter Sensor Characteristic

Location Range Altitude Sensor Tgpe Pixel Field of View

in ft. in ft. (H x V) (H x V)deg

Threshold

CAT II-DH

CAT I-DH

Middle Marker

1000' Altitude

Outer Marker

0.0

908.1

2816.2

4500.0

18081.1

29040.1

50.0

100.0

200.0

288.2

1000.0

1574.3

HDTV

FLIR

MMW

1920 x 1035

512x512

80x64

30x24

28x21

27x22

Table 2: Sensor positional parameters and sensor characteristics
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Figure 5: Sensitivity in the direction of range
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Figure 7: Sensitivity in the direction of altitude

23



2.2 Camera Calibration from Image-based Features

Camera calibration is the problem of determining camera parameters - including location

and orientation - from images. Camera parameters can be grouped into two categories:

extrinsic parameters, which provide information regarding the camera position and orien-

tation with respect to a reference world coordinate system, and intrinsic parameters, which

include focal length and scale factors in units of pixels in the image plane.

A number of methods for estimating the camera pose are available in the literature.

They can be divided into two classes:

• The most common approach to estimating the camera pose has been to use point and

line correspondences. These point or line features arise either from certain man-made

objects placed in the scene for the purpose of calibration or from certain landmarks

that already exist in the 3D scene. Estimation is done either by applying triangulation

to known scene points and their corresponding image points, or by developing and

solving a set of equations that relate the scene points, the corresponding image points,

and the camera parameters. Earlier research on this approach was done by Wolf

[130], Fischler and Bolles [39], and Ganapathy [43]. Liu et al. [70] showed that

the computation of the rotation and translation vector of the camera are separable.

Chou and Tsai [23] used house corners as marks and Haralick [46] used the corners

of rectangles of unknown size to determine the camera view angle parameters. Chen

et al.[21] proposed using a cube as a calibration object, whereas a method that uses

rectangular parallelepiped with known dimensions as the calibration object is proposed

in [113]. For calibration of a camera mounted on an autonomous land vehicle running
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on anoutdoorroad,Liu andDeng[66]usedroad boundariesascalibrationobjects.

Fukuchi[42]usedspecialman-mademarkswith certainconstraintsfor determining

the positionof a robotusingstandardshapedmarks.

• Objectswith curveshavebeenusedfor cameracalibration,suchasa planewith conic

or polygonarcsas in [48]and semi-circlein [65]. Mageeand Aggarwalproposeda

methodthat usesa calibratedsphere[75].

All oftheaboveproceduresinvolvetwosteps.Thefirst stepis to locatefeaturepointson

theimageplanethat correspondto theknown3-Dpoints,andthesecondstepis to formulate

and solvea set of equationsthat relatethe scenepoints and the imagepoints, thereby

satisfyingcertainconstraints. Thesecomputationalapproachesassumean idealpinhole

cameraandmodelthe l_ixelsaspointsof insignificantdimension,largelyignoringtheerror

introducedby theimageplanequantization.Moreaccuratecalibrationof the camera,or a

priori knowledgeabouttheerrorintroducedby theimageplanequantization,isquitecritical

in variousaspectsof computervision like objectrecognition,scenereconstruction,robot

navigation,etc. A brief reviewof someof the pastwork in error analysisof triangulation

to imageplanequantizationis givenin thenextsection.

2.2.1 Error due to Image Plane Quantization

Quantization of the image plane as well as the intensity levels have significant impact on the

outcome of various computational approaches to solving computer vision problems. The

problems are particularly important when the images are captured using low resolution

sensors. The impact of quantization error on computer vision was addressed as early as
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1969.A report by Hart on stereo-scopiccalculationsdiscussessensitivityof triangulation

processto pan, tilt, and quantizationerrors[49].McVeyand Leedevelopedequationsfor

measuringthe worstcaseerror in calculatingthe distancebetweenanobject anda stereo

visionsystem[76].

The navigationsystemreportedin [31,32]usesa singlecontinuousstrip paintedon the

floormarkingtherobot'sroute.Forsuccessfulnavigationof therobot,an importantdesign

considerationwasthe width of the line. That study analyzed the effects of various error

conditions on the width of the line, as seen in the image plane, to determine the optimal

line width on the floor.

The effect of image plane quantization on the determination of object location using

stereo set-up was analyzed in [13, 85]. These works assumed that the scene point was

equally likely to be everywhere within the volume formed by the lateral [13] or axial [85]

stereo triangulation method, and derived the probability distribution of the errors in all

three component directions.

Later in this section, we describe a new approach for determining the error in the camera

state. Our approach is based on the fact that two or more lines-of-sight connecting the scene

points and the corresponding image pixels meet at a single point known as the focal point.

Due to finite size of the pixel, for each scene point and the corresponding pixel, we can

consider four lines-of-sight passing through the four corners of each pixel. Two or more

scene points and their corresponding image pixels result in a polyhedron within which the

focal point is expected to lie. The volume of this polyhedron is proportional to the error

in the camera pose. We propose to minimize this volume by considering more points. The

selection of proper scene points - and also the number of scene points - reduces the region of
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uncertaintyin thedeterminationof thecamerapose.Thisanalysiscanbeusedto determine

goodcalibratingpoints,their distribution,andthenumberof scenepointsrequiredto stay

within theallowedrangeofcomputationalerrorfor aparticularvisionproblem.In situations

whereit is notpossibleto determinethe calibratingpointsin advance,this analysiscanbe

usedto computethe error in the estimatedcameraposition. Our analysiscanbeusedto

designalgorithmto selectgoodfeaturepointsfor calibrationfrom availablepool of feature

points dynamically.

2.2.2 Analysis of Image Plane Quantization Error

Determination of camera external parameters using point-based features requires a certain

minimum number of scene points ($1, $2, $3,..., Sn) and their corresponding image points

(I1, I2, I3,..., In). Basic triangulation of these scene points and the corresponding image

points requires all the lines-of-sight to pass through the focal point of the camera lens.

Under ideal conditions (ignoring the effects of quantization of the image plane and lens

distortion), for a given set of scene points and their corresponding image points, there can

be only one unique position for the camera in the world coordinate system. Due to the

finite size of an image pixel, however, a given scene point can be projected onto the image

plane through an infinite number of points within the finite sized pixel. When any two such

scene points are projected onto the image plane, the intersection of these lines of sight form

a polyhedron of finite volume within which the focal point of the camera is expected to lie

anywhere, as shown in Fig. 8. The approach presented here computes the range of values

for camera state parameters (i.e., the 3-D coordinates of the center of the image plane in the

world coordinate system and its orientation with respect to the reference axes that would
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Figure 8: Lines of sight forming a polyhedron due to image plane quantization

satisfy the constraint for the valid location of the focal point).

As explained in the previous section, due to image plane quantization, basic triangulation

of known scene points .and their corresponding image points forms a polyhedron of finite

volume within which the focal point of the lens is expected to lie. Since the camera's

extrinsic parameters (position and orientation) are uncertain, it is not clear where this

polyhedron is located in the world coordinate system. However, it is known that the focal

point is at a perpendicular distance f (focal length) in front of the image plane along the

optical axis of the camera, and that the scene point Si corresponds to image point Ii in the

image plane. Hence, there are ranges of values for each camera parameter that would satisfy

the above two constraints. In the next two sections we present the mathematical treatment

of the above concept, to find the range of values for each camera parameter separately.

The problem addressed here is different from the well known problem of determination

of error in computing the 3-D position of the objects using a stereo system [13, 85], where

the camera position is fixed and known and, as a result, the region of uncertainty for the

28



object locationis welldefinedby the camerageometry.However,in ourproblemscenario

the locationof the region of uncertainty is not defined a priori, since the camera position

itself is uncertain. Although the problem discussed in [31, 32] is somewhat close to the

problem being addressed here, their analysis is limited to a particular application. The

approach taken in this work does not make any assumptions about the kind of outdoor

scene points available for calibration.

Fig. 9 shows the system geometry used in this analysis. Two separate coordinate

systems are shown: the coordinate (X, Y, Z) represents the world coordinate system, and

the coordinate (u, v) represents the coordinate system in the image plane. (Xc, Yc, Zc) is the

camera position in the world coordinate system and (8, ¢, ¢) are, respectively, the tilt, yaw,

and roll angles of the camera. We follow the convention given in [45]: the term "camera

position" or "sensor position" means the position of the center of the image plane, and the

focal point is in front of the image plane. In the above geometry, we assume the gimbal

center offset to be zero and Z = 0 to be the ground plane. Therefore, the height of the

sensor is Zc. Let A u and A v be the size of a pixel along the u and v directions, respectively,

on the image plane. Let ] be the focal length of the camera and M × N be the number of

pixels along the u and v directions of the image plane, respectively, with the center pixel

numbered as (0, 0). We make the following assumptions in this analysis:

• This work analyzes the accuracy in obtaining the camera pose by triangulation of 3D

scene points on a single quantized image plane. Image plane quantization is assumed

to be the only source of error in computation of the camera position.

• A pinhole camera model is assumed [59], thereby ignoring camera lens distortion and
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Figure 9: Camera geometry

other optical non-linearities.

• The problem of detecting the image point that corresponds to a given scene point is

assumed to have been solved. The world coordinates of the scene points used in the

calibration process are assumed to be accurate.

The focal point is in front of the image plane, as is the case in any practical camera.

Assuming the image plane to be in front of the lens center is not appropriate for this

analysis, since this might introduce significant error in the volume of the polyhedron

formed - especially when the scene points are close to the camera.

Analysis is carried out in the following four steps:

• Assume the camera position vector to be (Xc,Yc, Zc, 8, ¢, ¢), and develop equations

for the world coordinates of the corners of the image pixels that are to be used in the

calibration process.
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* Formthe planeequationsthat containthe scenepoint andthe two adjacentcorners

of thepixel correspondingto the scenepoint.

• Computethe coordinatesof the focalpoint in the world coordinatesystemfor the

assumedcamerapositionvector.

Verify that the focalpoint lieswithin the polyhedronformedby the intersectionof

the aboveplanes.

Themathematicaltreatmentof the abovefourstepsaredescribedin detail below.

A. Computing the world coordinates of the corners of image pizels

We assume the image plane to be at the origin of the world coordinate system, with zero

tilt, roll, and yaw, as shown in Fig. 10. In this situation, the image plane coincides with the

XZ plane and the world coordinates of a pixel (i,j) in the image plane are (iAu, O, jay).

When the camera is rotated, the coordinates of the pixel (i, j) in the world coordinate sys-

tem can be computed by applying necessary point transformations [45] to the original point

as given below.

Xij iAu

o
=R

jay

1 1
k J k

(6)
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Figure 10: A point (i,j) in the image plane rotated about (X, Y, Z)

where

R = RcP_R_ =

Too rOl to2 to3

rio rll r12 r13

T20 r21 r22 r23

r30 r31 r32 r33

(7)

The individual elements of the rotation vector can be computed by premultiplying the

following three rotation vectors.

R_ = /cos0//loo0//c o0/0 Ce S# 0 - S_ C_ 0 0
0 1 0 0 Re = R_ =

S_ 0 C_ 0 0 -Se Ce 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

(8)

where C stands for cosine and S for sine of the respective angles.

Since we are concerned with computing the world coordinates of the corners of any pixel

in the image plane, we can think of the imaging process as rotating every point in the image

plane by applying proper rotation vectors, with the center of the image plane as the origin of
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theworld coordinate system [45], and then translating them to a new position in the world

coordinate system by applying proper translation vector. Therefore, for nonzero values of

the camera position vector, the world coordinate of a pixel (i, j) in the image plane is given

by

Xij iAu ., c

_C

=R + (9)

1 1

where

M <i< 2- _<i < - _ --

The 3D coordinates (X k, y/k, Zk) of the four corners of the image pixel (i,j) in the world

coordinate system can be computed by the following equations.

'3

):k
*3

,?k
*3

[

(i + kl)Au

0
=R

(j + k2)Av

1

-4-

f

Xc

1

(11)

where k = 0, 1, 2,3 stands for the four corners of the pixel (i,j). Values of kl and k2 are

decided by the value of k as shown in Fig. 11 .

B. Form the plane equations

The second step in the analysis is to form the plane equations that contain the scene point

and the two adjacent corners of the pixel in the image plane that correspond to the scene
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Figure 11: Pixel (i,j) in the image plane with numbers assigned to the corners

point (see Fig. 8 ). Let (Xp, Yp, Zp) be the coordinate of the scene point p whose image is

formed at pixel (ip,jp) in the image plane. The coordinates of the four corners of the pixel

(ip,jp) can be computed using Eq. 11 as

(ip + kl)Au Xc

Yi_k 0 Yc
=R +

k +

1 ) 1 \ l j

(12)

Two adjacent corners of the pixel (ip,jp) and the scene point (Xp, Yp, Zp) form a plane.

Every scene point and the corresponding image pixel gives rise to four such planes. Each of

these planes can be represented by plane equations that contain the three points (x,. r,. z_).

(x,Fod4_,y,,._od4_,z o_o.4_)._d.rx(.+l)_°_',_ ,y,(;+l)_°"_, z(_+_)_°"',, ). The equation for the plane can

be written as

aij X + + + d_'i; 0 (13)
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where

I Yp Zp 1 1

pk y.kmod4p _kmod4p
aiJ = - _ "-'ij 1

y(k+l)mod4p g(k+l)mod4p
"ij "_ij 1

= __ j(kmod4p zkmod4p
--ij "-'U

_(!k+l)_dap (k+l)._odap--,3 Z_j

1I1

1

I xp Yp i 1

_iik = x krnod4p kmod4pY,j i

j((k+l)rnod4p y(k+l)mod4p--ij _ij i

d_ik = _ _( krnod4p y.kmod4p 7kmod4p (14)
--ij - z3 "ij

X} k+l)m°d4p V'('k+l)m°d4p-z_ Z_j(k+Um°d4p

p O, 1, 2,.. ,n are the scene points and (ai_k, _k, k k= . _, d_i_ ) are the plane parameters.

C. Find the world coordinates of the focal point

The focal point of the camera in our model is at a perpendicular distance f in front of the

image plane along the optical axis of the camera. The world coordinates (XI, YI, ZI) of the

focal point for a given image plane position (Xc, Yc, Zc) can be computed (as in Step 1 of
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this analysis)by useof necessarytransformation:

X f 0 X_

Yl f
=R +

o

1 1 1

(15)

D. Find the range of values for camera parameters

Four planes formed by a scene point and its corresponding pixel edges in the image plane

intersect with other similar planes formed by other scene points and their corresponding

image pixel edges, thus forming a common volume of a polyhedral shape. For a given

camera position, the estimated focal point should lie within this volume (see Fig. 8 ). One

way to check for this is to compute bounding surfaces of the polyhedron and then verify

that the focal point lies within the polyhedron. This method is computationally expensive,

since it is not easy to determine the coordinates of the vertices of the polyhedron formed

by the intersection of many planes, especially when some of the planes may lie outside the

polyhedron formed by the other planes. Instead, we extend the concept of solution set of

linear inequalities [81] to determine if the point is within the polyhedron.

Solution set of Linear Inequalities

The solution set or graph of the inequality ax + by + cz + d > 0 consists of all the points

that lie on or above the plane ax + by + cz + d = 0 if c > 0; and consists of all the points

that lie on or below the plane ax + by + cz ÷ d = 0 if c < 0. Similarly, the solution set of

the inequality ax + by + cz + d <_ 0 consists of all the points that lie on or above the plane
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ax + by + cz + d = 0 if c < 0; and consists of all the points that lie on or below the plane

ax+by+cz+d= 0 if c> 0.

_ _ne 1

X

Figure 12: Two of the four planes formed by a scene point and its corresponding image

pixel

Fig. 12 shows how the above concept can be used to verify whether the focal point

is within the polyhedron. (For clarity, only one scene point and its corresponding image

pixel is shown with only the two of the four planes (plane 0 and 2) formed by the scene

point and the corresponding pixel edges.) According to the figure, the focal point has to lie

below plane 2 and above plane 0. Hence, for (XI, ]II, ZI) to lie within the common volume

formed by the intersection of the planes, every plane has to satisfy the following inequality:

for planes 0 and 2

aij X $ + -t- +

" ¢;zl oaij X! + + + _; >_

if c_j > 0

if c_j < 0

(16)
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for planes1and 3

a ij X I -b q- -b d_ik

aij X f

if c_j > 0

if cq < 0

(17)

The values of camera parameters are varied independently and separately around their true

values to find the range of possible values for the camera parameters that will satisfy the

above set of inequality equations formed by a set of n scene points and their corresponding

image points.

2.2.3 Experimental Results

The above analytical procedure is used to determine the calibration error for a simulated

camera geometry. The analytical procedure for simulating the test data is described in the

following section.

2.2.4 Data Simulation

For verification of this analysis using simulated data, a camera with an M x N pixel sensor

with sensor elements of size Au x Av is considered. Let f be the focal length of the

sensor. For a given camera position vector (Xc,Yc, Zc, 8, ¢, ¢), a number of scene points

with coordinates (Xp, Yp, Zp) that are computed to lie within the angular view of the camera

are picked randomly. The coordinates of these scene points with reference to the camera
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axesarecomputedby applyingthefollowingtransformation

U I

W I

V r

1

=R-1

l O O -Xc (xp

OlO -yc Yp

0 0 1 -Zc Zp

000 1 \1

(18)

where R -1 = R_IR-_IR_ 1. (Camera geometry is assumed to be the same as in the previous

section where w is the optical or viewing axis of the camera.) (See Fig. 9.) (u r, w _,v _) is

the coordinate of a scene point with respect to the camera axes (u, w, v), and (Xp, Yp, Zp)

is the scene point whose image coordinate is to be computed.

The position of the image point on the image plane after perspective transformation is

given by

f X u' f X v'
"-- - , v"------ (19)

u f W' -- f -- W'

The coordinate of the image point in terms of pixel numbers is computed by applying proper

image plane quantization as

,Uf I V II

ip = jp = (20)

The set of scene points (Xp, Yp, Zp) and their corresponding image coordinates (ip,jp) are

used to compute the accuracy of the camera state estimates using the analytical procedure

described in the Section 2.2.2.
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2.2.5 Results and Discussion

Three sets of tests were conducted to evaluate the effect of quantization on camera state

estimation using point-based features. The objective of the first set of tests was to compute

the error in various camera parameters as one of the camera parameters was continuously

varied over a range of values. Figures 13(a) through 13(f) show the estimation error for

each of the external parameters [i.e., (Xc, Yc, Zc, 8, ¢, ¢)] using two fixed ground points, as

the camera was moved along the Z direction with zero roll and yaw, and a tilt of 60 °. A

high resolution camera with a pixel width of 0.005 x 0.005 cm and focal length of 7.5 cm

was considered. The coordinates of the two ground points used in the triangulation process

were (10, 48, 0) and (-10, 68, 0). The error in computing the camera state increased as the

camera moved away from the calibrating scene points. Similar results were obtained for

different sets of calibration points and also when the camera moved in X and Y directions.

The serrated nature of the error curve was also observed in the stereopsis experiment carried

out by Hart [33]; similar arguments can be used to explain the process here.

To study the variation of error with image resolution, the above set of tests were repeated

for three sensors with different resolutions. The experiments were repeated for sensors with

pixel size 0.0005 x 0.0005, 0.01 × 0.01 and 0.02 x 0.02. The error in computing the three

positional parameters (i.e., (Xc, Yc, Zc)) for each of the sensors is plotted respectively in

Figures 14(a) through 14(c) . In each of these cases, the camera was moved along the

Z axis. Two ground points were used in the triangulation process, and the camera was

assumed to have a tilt of 60°, with zero roll and yaw. As expected, the error in the camera

pose estimation increased as the pixel size increased.
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Theobjective of the third set of tests was to observe the effect of selecting more scene

points for calibrating the camera. Figures 15(a) through 15(c) show the error in computing

the positional parameters (Xc, Yc, Zc) of the camera by considering two and three calibrating

points. A camera with pixel size of 0.01 × 0.01 was assumed with a tilt of 45 °, zero roll and

yaw. The coordinates of the three points used in the triangulation were (0, 46, 0), (4, 46,

0), and (-4, 46, 0). As expected, using three points improved the accuracy of estimation.

Considering even more points has been found to further improve accuracy. The accuracy

of computation was also found to depend upon the location of the feature points on the

ground.

Image plane quantization - the natural outcome of an imaging process - has a signifi-

cant impact on the accuracy of the outcome of all computational approaches to computer

vision problems. Small errors introduced in estimating the camera pose due to image plane

quantization might have significant impact on later stages of processing. The analytical

approach proposed in this section lets one compute the error in each of the camera pa-

rameters separately. Given the scene points and their corresponding image points, one can

decide in advance which scene points are good for estimating the camera pose and how

many calibration points might be necessary to have the computed pose within the desired

accuracy range. One drawback of the proposed analytical approach is that, with the present

approach, it is not dynamically possible to identify good scene points or select an additional

point to improve accuracy.
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2.3 Summary

Since the camera pose information provided by the GPS and on-board instrument is not

accurate, we intend to use image-based features such as points or lines to estimate the

position and orientation of the camera in 3-D. The accuracy of such estimation depends on

the sensor resolution and sensor position in 3-D. A SVS is envisioned to be equipped with

sensors of different modalities operating under different weather conditions and lighting

situations. Since the resolution of these sensors varies, we wanted to explore whether the

use of image-based features (such as points or lines) when used in a passive triangulation

could provide a better estimate of the camera pose than what was provided by the GPS

and other on-board instruments.

In section 2.1, we described an analytical model for computing the error in the camera

pose estimation using image-based features. The sensitivity equations developed using the

above model relate the error in the individual sensor positional parameters to the sensor

resolution and the position of the image features in terms of the pixel number in the image

plane. We evaluated three different sensors at six different positions using the equations

developed based on the proposed analytical model. It is clear from our analysis that only

HDTV can provide a better estimate than the GPS. The use of HDTV, however, is not

currently approved or recommended. One alternative is to use the GPS information as the

initial solution in a non-linear optimization algorithm to obtain an optimal solution from

the image-based features obtained from the low resolution sensor images. The problem of

integration of various sensor information was not explored in this research.

In section 2.2, we proposed a new method for computing the camera pose and the error
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in the estimatedcameraposedueto imageplanequantization.This procedurewasbased

on the fact that lines-of-sightformedby twoor morefeaturepointsprovideanuncertainty

volumefor thecamerapose.Weproposeda non-linearalgorithmicapproachfor computing

this uncertaintyvolume. By selectingmorefeaturepoints, the uncertaintyvolumewas

reduced.Selectinggoodpointsfromtheavailablesetoffeaturepoints,however,will improve

theconvergenceof thealgorithm.Theearliermodelprovidedthedistributionof errorin the

cameraposeestimation,whereasthesecondmodelprovidedanalgorithmfor estimatingthe

cameraposeandthe errorin thecamerapose,andalsominimizedtheerrorby considering

morepoints.

If no prior knowledgeabout the likelihoodof error in the estimateis availablewhen

selectinga point for usein cameraposeestimation,then the secondalgorithmcanbeused

alonein a greedyalgorithm. However,this doesnot guaranteea globalminimumin the

error function. By usingthe first analysis,wecanpresortthe featurepointsbasedon the

sensitivityvalueat thosepixelsfor a givenpositionof the sensor,and usethe features

incrementallyto obtaina globalminimumin the errorfunction.
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Figure16:Theinput PassiveMillimeter Waveimage

3 Detection of Objects in Passive Millimeter Wave Images

A Synthetic Vision System (SVS) integrates the outputs of various sensors with GPS/INS

information and airport geometry database to locate the aircraft within the airport, detect

obstacles, determine potential conflicts, issue advisories, and sound cockpit alarms. The

system selects among the outputs of different sensors depending on the visibility conditions,

and processes these sensor outputs to extract informations to guide the pilot. In the previous

section we analyzed the sensitivity of three sensors which could be used under three different

visibility conditions( i.e, FLIR during night, HDTV during day light under normal weather

conditions, and PMMW during fog). Since the resolution and quality of the images captured

using these sensors vary, an algorithm for a specific purpose should be designed depending

on the sensor type. In this section, we describe an algorithm for detection of both the

runway and obstacles on the runway for images acquired using a PMMW sensor [117].

Since the energy attenuation in the visible spectrum due to fog is very large [132], sen-

sors are being designed to operate at lower frequencies (e.g., 94 GHz). A lower attenuation

provides the ability to see through fog. Images obtained from sensors operating at this

frequency (such as the PMMW sensors) are of very low spatial resolution (Fig. 16); how-

ever, supporting information about the airport and the position, orientation, and velocity
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of aircraft is generally available. We used this information to guide our image analysis sys-

tem. The geometric model of the airport contained positions of the runways/taxiways and

buildings.The navigation instruments provided the position of the aircraft, and on-board

instruments provided the orientation of the aircraft (yaw, pitch, and roll). We used this

information to define regions of interest in the image where important features - such as

runways/taxiways, the horizon, etc. - are likely to be present. Edges corresponding to

these features of interest are detected within these regions. After delineating the regions

representing runway/taxiways, we look for objects inside and outside these regions. The

proposed system consists of the three functional modules, which are described below.

• Model Transformation allows input of the airport model and the camera state infor-

mation to define regions of interest in the image plane.

• Feature Detection and Localization algorithm operates within these regions of interest,

to detect the edges of the runway, horizon, etc., in the image.

• Object Detection algorithm uses simple histogram-based thresholding to detect object

regions which are distinct from the homogeneous background. Two different thresh-

olds are used to detect obstacles inside and outside the runway.

3.1 Model Transformation

Since PMMW images are low-contrast, low-resolution images, simple edge detection tech-

niques on these images generate many noisy edge pixels, in addition to those belonging to

the true edges, such as runways, sky, etc. This problem is alleviated by defining regions

where the true edges are expected to occur, using knowledge about the aircraft position and

48



a modelof the airport. Themainfunctionof themoduleis to definea regionof intereston

the groundplanefor eachfeaturein themodeland to perform3-D to 2-D transformation.

The modulealsodefinesa regionin the imageplanewherethe horizonlineshouldoccur.

3.1.1 Defining Regions of Interest for Runway Edges

The error between the expected location of a feature and its actual position in the image

depends on several factors, most notably the accuracy of the camera position parameters

used by the model transformation. Furthermore, it is evident from the analysis in section 2

that the ground area covered by a pixel is a function of the position of the pixel in the image.

Thus, it is not reasonable to define the search space for each feature as a fixed number of

pixels centered around the expected location in the image plane. We define the region of

interest in the 3-D space and then apply transformation to get the corresponding region of

interest in the image. The extent of the search space in the 3-D space is determined by the

estimated error in the camera positional parameters (which are based on GPS and on-board

instrument data).

The geometric model of the airport contains a sequence of 3-D coordinates for the

vertices of the runway/taxiway, which form a polygon with n vertices:

runway = {Pi}, i = 1,2,...,n. (21)

where Pi = (Xi, Yi, Zi) is one of the vertices of the polygon. Note that Zi = O. PiPi+l

specifies an edge of the polygon. The region of interest is defined as a rectangle on the

ground which encloses the edge. Therefore, each edge PiPi+l of the polygon is associated
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with the region of interest by four points bi = (Xj, Yj, Zj), j = 1,..., 4, and Zj = O.

The width of the region of interest is defined as a function of the width of the run-

way/taxiway, w accuracy of the GPS data, g(g <_ 1) and the accuracy of the on-board

instruments, d(d < 1). Note that g and d are determined by the specification and charac-

teristics of these instruments. This relationship is given by

0.2w
width(w,g,d) - (22)

gd

Note that the minimum width is 0.2w when g = d = 1, which corresponds to +10% potential

displacement of runway edge feature. To limit the search area from being a large fraction

of the runway width, we limit the search width to 0.4w - even if gd < 0.5.

After defining the region of interest for each edge, 3-D to 2-D coordinate transformation

is performed using perspective projection, rotation, and translation transformation matrices

[45]. After perspective projection, following special cases are considered:

• The region of interest degenerates to a line in the image plane when the region is too

far from the camera, and

• The region of interest in the image plane becomes very large when the edge is very

close to the camera.

A minimum width is assigned in the image plane in order to provide some search space for

the feature detector in the former case. A maximum width is defined in the image plane

to further restrict the region in the latter. In our experiment, the minimum and maximum

widths of a region of interest were set to 10 and 20 pixels, respectively.
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3.1.2 Defining Search Space for Horizon Line

When the vertical angular field of view is larger than 20, a horizon line appears in the

image (see Fig. 17). The horizon is an important clue to estimating the camera orientation,

since it gives the roll angle information directly. The expected position of the horizon line

is easily computed using the camera geometry shown in Fig. 17. The associated region of

interest is defined to be 20 pixels wide centered around the expected horizon line in the

image.

It is possible for the projection of the region of interest onto the image plane to be

partially outside the image boundary. In such cases, we need to clip these regions so that

the search space always remains within the confines of the image. This is done using a

"polygon clip and fill" algorithm [41]. The regions of interest for both the runway and the

horizon of the image sequence used in these experiments are shown in Fig. 18.
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Figure18:Regionof interest

3.2 Feature Localization and Object Detection

3.2.1 Runway Localization

The system searches for the expected features within the region of interest, as defined by the

previous algorithm. This will significantly reduce search time and also avoid the spurious

response which is likely in such a low resolution input image. An accurate localization is

necessary to estimate the motion parameters and camera pose.

A sobel edge detector is applied to the sensor image. We then select one of the four

scanning directions (-45 °, 0°, 45 °, 90 °) which is approximately orthogonal to the direction

of the expected edge. Along each scan line, we locate pixels with greatest edge strength.

Since the runway edge is supposed to be a straight line, we fit a best line to these pixels.

We also associate a measure of confidence for these detected edges based on the number of

edge pixels detected along the line.

3.2.2 Object Detection

In this section, the region inside and outside the runway/taxiways are checked separately for

the existence of stationary or moving objects. The image has three homogeneous regions:

sky, the runway/taxiways, and the region outside the runway/taxiway. Any objects on or
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outsideof the runway/taxiwayareexpectedto havesomedeviationin graylevelfromtheir

respectivehomogeneousbackground.Therefore,weusehistogram-basedthresholdingfor

objectdetection.The thresholdswhichdeterminethis deviationaresetto bedifferentfor

differentregions.

Wegenerateamaskimage,whichgeneratesthreehomogeneousregions.Usingthis mask

image,wegeneratethe histogramof the original input imageand computeits standard

deviationfor eachregion. The thresholdvalueis determinedasa function of the mean

and the standarddeviations.Any areawhichhasgray level lower than the thresholdis

consideredto be an object region. An object is assumedto havereasonablesize. This

sizerestrictionon the objectcanbe usedto ignorespuriousresponsesresultingfrom the

thresholding.Eachobjectis labeledbasedon the 4-connectivity.

3.3 Experimental Results

We tested our algorithm on a test image provided by the NASA Langley Research Center.

This image was obtained using a single pixel camera located at a fixed point in space. (A

camera with an array of pixels was under development when this work was carried out.)

The camera was mechanically scanned to obtain a 50 x 150 pixel image. This is the image

shown in Fig. 16 . We were also provided with a model of the runway which gave the 3-D

world coordinates of the runway corners, locations of the buildings, etc. Using these data

and the single image, we created a sequence of 30 frames to simulate the images from a

moving camera. Frames l(original), 5, 10 and 15 from this sequence are shown in Fig. 19.

Edge-enhanced images corresponding to these frames axe shown in Fig. 20. The regions of

interest defined on these frames are shown in Fig. 21. Delineated features superimposed
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Figure 19: Input PMMW images (a)Frame 0 (b)Frame 5 (c)Fra.me 10 (d)Frame 15

on the image are shown in Fig. 22. Objects detected on the runway in Frame 1 and those

outside the runway are shown in Fig. 23. Warning signals could be generated for each object

on or near the runway.

3.4 Summary

In this section, we described a model-based system for recognition of objects in low resolu-

tion PMMW image sequences. Using knowledge of the camera motion, the runway model,

and error in the parameters, the regions of interest for each of the runway edges are defined.

We applied least square fit on strong edge pixels detected along the direction approximately

orthogonal to the expected edge, to localize the runway feature within the search region.

We tested our algorithm on a sequence of 30 frames and good results were obtained. The

performance of the algorithm depend on the correctness of the search region and the robust-

ness of the feature localization approach. The correctness of the search region depends on

the knowledge of error in the camera pose and the runway model which, in turn, depends on
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Figure20: Edge images (a)Frame 0 (b)Frame 5 (c)Frame 10 (d)Frame 15

(c) (d)

Figure 21: Region of interest images (a)Frame 0 (b)Frame 5 (c)Frame 10 (d)Frame 15
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(c) (d)

Figure22:Detectedrunway(a)Frame0 (b)Frame5 (c)Frame10(d)Frame15

(a) (b)

Figure23: Detectedobject (a)Insidethe runway(b)Outsidethe runway
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the accuracy of the position estimate given by the GPS and INS. However, the robustness

of the feature localization procedure depends on performance of the edge detector and the

actual localization method. To make the method more robust, one can employ one or more

of the following additional processing steps, however, at the cost of additional computation

time: (1) consider strong edge pixels in each of the eight directions for least square fitting,

(2) use a weighting function based on the gradient strength, (3) detect and remove outliers

by computing the deviation of the edge pixels from the fitted runway edge.

A modified version of the runway detection algorithm is described in [119]. It was tested

using a video image sequence obtained from a sensor mounted on-board a landing aircraft.

Our results suggest that a model-based approach for detection of runways performs well,

in cases of both PMMW and video sensors, and can be used to aid pilots in identifying the

runway during landing.

The obstacle detection algorithm used in this work is based on the assumption that

the regions are homogeneous. This assumption is valid for the PMMW image used in this

experiment, and has also produced good results in all images of the sequence. On the

other hand, it is a very weak assumption. It is not valid for images of different modality,

especially in cases of video images. We have also investigated the real time implementation

feasibility of various algorithms described in this section using available dedicated image

processing boards from three separate vendors (Data-cube, Data-translation, and Imaging

Technology) [29]. Further research on the feasibility of a PMMW sensor in the design of a

SVS could not be continued for this study due to the unavailability of the sensor array.
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4 Multiple Motion Segmentation and Estimation

A key to obstacle detection in Passive Millimeter Wave (PMMW) images is the homogeneity

property of the different image regions that are identified by using the camera position

information and the runway model. Since this assumption is not valid in the case of video

images, a different method needs to be used to detect obstacles.

An important cue for detecting obstacles in a sequence of images obtained from a moving

camera is the apparent motion of the brightness pattern in the image. Due to the camera

motion, though, the whole scene appears to be moving, with image regions due to the

obstacles moving differently than the background. Depending on the height of the obstacles

and the 3-D motion of the obstacles relative to the camera, the apparent motion of the

corresponding image regions will be different.

In this section, we describe a new segmentation algorithm for detecting obstacles in

video image sequences using motion as the main cue. We assume that the background is

planar or is piecewise planar and use a recursive motion-based segmentation algorithm to

segment image into regions corresponding to different moving objects. Initially, to detect

motion, optical flow is computed at corner-like feature points in the image. Optical flow

vectors are then grouped into regions, and motion parameters are computed for each region

using the new recursive motion-based segmentation and estimation algorithm.

A brief review of the past research in the area of motion detection, segmentation, and

estimation is given in the following section, followed by an introduction to the proposed

approach. The details of the individual stages of the proposed motion segmentation and

estimation method are described in detail in Sections 4.3 and 4.4. The results obtained
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usingboth simulatedand realimagesarealsopresented.

4.1 Methodologies for Motion Detection and Estimation

The relative motion between the objects in a scene and a camera gives rise to the apparent

motion of objects in a sequence of images. This motion may be characterized by observing

the apparent motion of a discrete set of features or brightness patterns in the images. Motion

of objects in the scene can be derived by analyzing the motion of features or brightness

patterns associated with the objects in the image sequence. Two distinct approaches have

been developed for the computation of motion from image sequences.

The first approach, known as the feature-based approach, is based on extracting a set of

relatively sparse, but highly discriminatory, two-dimensional features in the images corre-

sponding to three-dimensional object features, such as corners, lines corresponding to edges

demarcating the surfaces of the object in 3-D, etc. Such points and/or lines are extracted

from each image, and inter-frame correspondence is then established between these fea-

tures. Constraints are formulated based on assumptions such as rigid body motion i.e, the

3-D distance between two features on a rigid body remains the same after object/camera

motion. Such constraints usually result in a system of non-linear equations. The observed

displacement of the 2-D image features are used to solve these equations, leading ultimately

to the computation of motion parameters for objects in the scene.

The other approach involves computing the two-dimensional field of instantaneous ve-

locities of brightness values in the image plane or optical flow. A relatively dense flow field

is estimated, usually at every pixel in the image. The optical flow is then used in con-

junction with added constraints or information regarding the scene to compute the actual
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three-dimensionalrelativevelocitiesbetweensceneobjectsandcamera.

4.1.1 Feature-based Motion Estimation

In this approach, point and line features are extracted from each image and inter-frame

correspondence over two or more frames is established. Equations relating the relative

position and motion between the camera and the imaged scene to the feature motion in

the image are developed and solved to estimate the structure and motion. Many linear and

non-linear methods for computing the structure and motion from line and point features

are reported in the literature [6, 15, 16, 25, 26, 27, 28, 36, 37, 38, 50, 62, 63, 67, 68, 71, 72,

79, 89, 91, 92, 103, 104, 105, 106, 123, 126, 127, 128, 129, 131, 133].

Non-linear methods iteratively solve non-linear equations derived to relate 3-D motion

parameters with the observables in the image plane as in [27, 28, 36, 62, 106], whereas

methods using linear algorithms provides closed-form solutions to the motion parameters

[37, 38, 63, 67, 68, 71, 72, 88, 123, 126, 128, 129]. The challenge in the case of non-linear

methods is to solve non-linear equations in the form of objective functions, to minimize the

error between the observed and the predicted motion.

Although various numerical methods could be applied to these non-linear equations,

the global minimum may not be reached unless the initial guess is sufficiently close to the

true value [28, 38, 128]. In addition a non-linear approach is computationally expensive,

due to the exhaustive search of the solution space. Although linear algorithms use differ-

ent methods to determine the unknowns, they share the same key structure: determine

the intermediate parameters, which are called the essential parameters based on the epipo-

lar constraint, then compute the motion parameters from the essential parameters. Even
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though the solution to a linear system is guaranteed (except for degenerate cases), the

solution is highly sensitive to noise [37, 38, 123].

To improve the accuracy of estimation, researchers have proposed using either more data

points than the required minimum in a two-view algorithm, or use data from a sequence

of images [6, 15, 16, 27, 28, 91, 106]. Algorithms that use multiple images of a rigid

scene to produce a more accurate reconstruction either process data from all of the images

simultaneously, as in the case of batch algorithms [27, 28, 91, 104, 106, 126, 131], or update

the previous estimate using the measurement data from the new frame by maintaining

some notion of state using an extended Kalman filter [6, 15, 16]. An optimal estimation

procedure to overcome the noise sensitivity of linear algorithms and inaccuracy of non-linear

algorithms due to an incorrect initial guess is suggested in [28, 127]. This is a non-linear

optimization procedure, where the initial value for the non-linear algorithm is provided by

a conventional linear algorithm.

A few researchers have considered the problem of reconstructing scenes using straight

line segments [25, 26, 37, 50, 67, 68, 103, 104, 129, 133]. When lines are used as features,

two views are no longer sufficient and a minimum of three views are required [37]. This is

because 3-D lines possess an additional degree of freedom when compared to the 3-D points.

In other words, one can slide a 3-D line along itself and obtain the same line. When the lines

are on the same plane, however, a linear algorithm can be formulated from two views [114].

Four or more lines are required to uniquely estimate the motion parameters. The non-linear

algorithm described in [67] requires six line correspondences over three frames. The linear

algorithm described in [68] requires 13 line correspondences over the same number of frames.

In reality, the features detected could be sparse and, as a result, reliable estimation cannot
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beachievedusinga singlecue.An integratedapproachfor motionandstructureestimation

isdescribedin [114],whichintegratesthemeasurementfromvariousfeaturessuchaspoints,

lines,regions,andtextureusinga non-linearoptimizationprocedure.

4.1.2 Optic Flow-based Motion Estimation

In this approach, the instantaneous changes in image brightness values in the image are

analyzed to yield a dense velocity map called the image flow or the optical flow. The

three dimensional motion and structure parameters axe then computed based on various

assumptions and/or additional information. No correspondence between features in suc-

cessive images is required. The optical flow technique relies on local spatial and temporal

derivatives of image brightness values.

The image velocities are, in general, functions of the motion of viewed objects relative to

the camera, objects' locations in 3-D space and 3-D structure of the objects. The recovery

of the 3-D motion and structure information from the sequence of monocular images can

be decomposed into two steps: 1) compute image plane velocities from changes in image

intensity values, and 2) use optical flow to compute 3-D motion and structure. Since the

optical flow constraint equation relating the optical flow to the spatial and temporal image

intensity gradient is not sufficient by itself to specify the optical flow uniquely, additional

assumptions are made to constrain the solution. Popular assumptions include: 1) optical

flow is smooth and neighboring points have similar velocities, 2) optical flow is constant

over an entire segment of the image, and 3) optical flow is the result of restricted motion

for example, planar motion.

Horn and Schunck [53] combined the gradient constraint equation with a global smooth-
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nessterm to constrain the estimated velocity field by minimizing the error over a domain

of interest. Lucas and Kanade [74] implemented a weighted least squares fit of local first-

order constraint to a constant model for optical flow in a small spatial neighborhood. Nagel

[82, 83, 84] used the second-order derivative to measure the optical flow along with the

oriented-smoothness constraint, in which smoothness is not imposed across steep intensity

gradients. Since accurate numerical differentiation may be impractical (due to either noise,

a small number of frames, or because of aliasing in the image acquisition process), region-

based matching methods are used for computing optical flow in [3, 94]. Such approaches

define the image velocity as the shift that yields the best fit between image regions at dif-

ferent times. Finding the best match amounts to maximizing a similarity measure such as

normalized correlation [94] or minimizing a distance measure such as the sum of squared

difference [3].

Fleet and Jepson [40] investigated the extraction of motion information using Fourier

techniques. Their method defines the component velocity in terms of the instantaneous

motion of level phase contours (zero crossing in Difference of Gaussian or Laplacian of

Gaussian image is viewed as level-phase crossings) in the output of band-pass velocity-

tuned filters. Given the component velocity estimates from the different filter channels, a

linear velocity model is fit to each local region. Heeger [52] used 3-D Gabor filters tuned to

different spatiotemporal frequency bands and described a method for combining the outputs

of the filters to compute local velocity vectors.

Having computed the optical flow, there still remains the problem of computing the

motion and structure of the object in 3-D space. The estimation of structure and motion

is based on the key assumption that the optical flow varies smoothly and the surface of the
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objectissmooth.A systemofequationsthat relates the optical flow and its first and second-

order derivatives to the 3-D structure and motion parameters is derived. This non-linear

over-determined system of equation may or may not yield a unique solution. A detailed

analysis of numerous cases has been presented by Subbarao [112] and Waxman [124, 125],

who have derived closed-form solutions for these cases. Subbarao shows that the solution,

in general, is unique and at most four solutions are possible in certain cases. Neghadaripour

[86] also addressed the ambiguity in interpreting optical flow produced by curved surfaces

in motion. The ambiguities inherent in interpreting noisy flow fields are discussed by Adiv

[2].

4.1.3 Multiple Motion Segmentation and Estimation

The general paradigm for time-varying imagery analysis in cases of feature-based approach

uses feature extraction, feature motion, and motion parameter estimation. In the formalism

of optical flow, the first two steps are merged in the computation of optical flow. The works

mentioned in the above review assume that the feature points, or oPtical flow vectors, result

from a single rigid object in motion. The main foci of such work are the minimum number of

features required to compute a solution, the possibility of multiple solutions, and the effect

of noise. If an image contains two or more objects moving independently, a segmentation

procedure becomes necessary before any estimation can be done. In the optical flow method,

this consists of grouping pixels corresponding to distinct objects into separate regions (i.e.,

segmenting the optic flow map, and then computing the three-dimensional coordinates of

surface points in the scene corresponding to each pixel in the image at which the flow

is computed). In feature-based analysis, the computing structure corresponds to forming
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groupsofimagefeaturesforeachobjectin thesceneandthencomputingthe3-Dcoordinates

of the objectfeatureassociatedwith eachimagefeature.

In autonomousnavigation,it is essentialto obtainsucha 3-Ddescriptionof the static

environmentin whichthevehicleis traveling,andto estimatetherangefrom anobstacleto

thecamera,in orderto avoidcollisionbychangingthevehicle'snominalpath. Themethods

for rangeestimationdescribedin [7,22,95,96,97, 107,108,110,115]usedKalmanfilter

to recursivelyestimatethe rangeat featurepoints in the image. The rangeestimation

proceduredescribedin [118]useda simpleincrementalweightedleastsquaresmethodfor

estimatingthe 3-D positionof a stationaryobject usingknowncamerastateparameters.

This algorithmextendedthe epipolarplaneimageanalysisdescribedin [8, 14] to general

cameramotion by assumingthe cameramotion to be piecewiselinear. Adiv segmented

the optical tiow basedon fit to an affinemodel [2]. The algorithm further groupedthe

resultingregionsto fit a modelof a planarsurfaceundergoing3-Dmotionsin perspective

projection. In [78],optical flowassociatedwith the contourchainpoints is computedand

chainpoints aregroupedbasedon the spatialproximity and coherencyof the apparent

movement.ThompsonandPong[121]andNelson[87]detectedmovingobjectsonthe basis

of simplefiowclusteringor inconsistencywith the backgroundflow. Black [12]described

anapproachthat formulatesa modelof surfacepatchesin termsof constraintson intensity

and motion,whileaccountingfor discontinuities.An incrementalminimizationschemeis

usedto segmentthe sceneovera sequenceof images.
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4.2 Problem Statement and the Proposed Approach

The focus of this work is to detect obstacles in video image sequences obtained from a

moving camera. In general, an obstacle is defined as an object, either stationary or moving,

which is in the path of the moving camera. We assume that the background is planar or is

piecewise planar. We are interested in detecting ground-based obstacles.

Since the camera is moving resulting in image motion everywhere on the image plane,

simple image differencing approaches (such as those described in [51, 58, 57]) are not ap-

plicable. Thompson and Pong [121] have shown by example that, different motion and

structure situation can result in identical optical flow distribution and hence, it is impos-

sible to derive motion or structure information uniquely, given only the image and the

optical flow field. If the camera motion and the background model are available, methods

using warping (such as the one described in [20, 44, 115]) can be used to detect obstacles.

Warping parameters are computed by matching image windows in two frames (as in [20])

or using the known camera motion and plane parameters (as in [44, 115]). Obstacles are

detected by thresholding the residual optical flow computed using the warped images. If

nothing is known about the camera motion or the background, approximate motion models

are hypothesized and are verified for individual flow vectors or for a group of flow vectors

as in [1].

In [1] an affine motion model with six parameters is used to describe the optical flow at a

pixel in the image plane. A six dimensional Hough space is formed. Each flow vector votes

to one or more bins of this Hough space, depending on the error between the model flow

(computed using the affine motion model) and the actual flow (computed at the pixel using
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an optical flow algorithm). The successof the Houghmethodrelieson prior knowledge

aboutthe rangeof parametervalues.The accuracyof the methodrelieson the resolution

of the Houghspace.

In our approach,we assumethat the background(i.e., the runway) is planaror is

piecewiseplanar,andweuseaplanarmotionmodelto describetheimagemotion. Evenin

caseswherethebackgroundisnot planar,theassumptionisvalid if theratio of distanceto

thescenepointfrom thecamerato thevariationin thedepthofscenepointsis large.Based

on this model,wedevelopa leastsquaremodelfitting algorithmto segmentthe imageand

detectthe obstacles.Unlike the Houghmethod,wedo not haveto rely on knowledgeof

therangeof themodelparameters.Instead,weestimatethe parametersfrom theavailable

dataandrefinetheestimaterecursivelyby removingtheoutliers.

Optical flow is computedusingLucasand Kanade'salgorithm [74],and usingSimon-

celli's [93]modificationto computethe covarianceof the estimatedoptical flow. Unlike

theconventionalapproach,whichtheoreticallycomputesthe opticalflowat everypixel, we

computetheoptical flowonly at selectedfeaturepoints.Sincetheoptical flowis large,and

to avoiderrorsdueto temporalaliasing,wecomputedthe optical flow usinghierarchical

computationmethodand Gaussianpyramid. Thedetailsof the optical flow computation

aregivenin the Section4.3. Theplanarmotionmodelandthe segmentationalgorithmto

segmentsingleandmultiplemotionaredescribedin Section4.4.

Variousstagesof our motion-basedsegmentationalgorithmweretestedusingboth real

andsyntheticimagesequencesprovidedbytheNASAAmesResearchCenter.Frames0, 25,

50,and75of the90-framerealimagesequence,runway_crossing_new(obtainedbya camera

mountedon-boarda landingaircraftwith a truck movingacrossthe runway)areshownin
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Fig. 24. In this imaging situation, the aircraft approaches the runway at an average velocity

of (60.0, 3.0 8.0) feet/second, and the truck is moving across the runway at an average

velocity of (13.0, 20.0, 2.0)4feet/second. The distance to the truck from the camera during

the flight duration of approximately three seconds ranges from 500-370 feet. In addition to

the truck and the runway lines, tire marks can be seen very clearly on the image. These

tire marks are used as additional features for estimating the runway plane parameters and

the detection of obstacles using motion-based segmentation. Synthetic images are created

using a simulation software provided by the NASA Ames Research Center. Fig. 25 shows

frames 1, 50, 100 and 150 of the sequence, landing_normal_32L, obtained using this software.

The image sequence (which was originally in color) was converted to gray scale and the

experiments were conducted on the gray scale image. These images were simulated for the

case of a camera assumed to be mounted on-board a landing aircraft while another aircraft

was crossing the runway. The image sequence was simulated using models for runway,

aircraft, and textures for the runways, taxiways, sky, etc.

4.3 Optical Flow Computation

Many algorithms for computing optical flow have been described in the literature. (These

were briefly introduced in the previous section.) Barton et al.[10] has classified these algo-

rithms into four classes: gradient-based, region-based, phase-based, and energy-based, and

has reported a good, quantitative evaluation of performance of various existing algorithms

in each of these four classes. Despite their differences, many of these techniques can be

4The nonzero velocity of the truck in the vertical direction is due to the slope of the runway with respect
to the reference coordinate system.
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(a) (b)

(c) (d)

Figure24: Real imagesequence:runway_crossing_new (a)Frame 0 (b)Frame 25 (c)Frame

50 (d)Frame 75
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(a) (b)

(c) (d)

Figure25:Syntheticimagesequence:landing_32L_normal (a)Frame 1 (b)Frame 50 (c)Frame

100 (d)Frame 150

7O



viewedconceptuallyin termsof followingthreestagesof processing:

• Prefiltering or smoothing with low-pass/band-pass filters, in order to extract signal

structures of interest and enhance the signal-to-noise ratio,

• Extraction of basic measurements, such as spatiotemporal derivatives (to measure

normal components of velocity) or local correlation surfaces, and

• Integration of these measurements to produce a 2-D flow field, which often involves

assumptions about the smoothness of the underlying flow field.

According to Barton's survey, Lucas and Kanade's method [74] provides estimation to

sub-pixel accuracy and performs most consistently and reliably over all their test images.

Due to these reasons we used the Lucas and Kanade's algorithm but with a modification

suggested by Simoncelli et al. [93] that uses a statistical model to account for noise. The

method not only provides the estimates of optical flow, but also their covariances. The

algorithm requires at least five frames, and optical flow is computed for the central frame.

Time and space gradients axe found at positions of interest, and are used to estimate the

optical flow.

Let I(x, y, t) be the image intensity signal as a function of position of a pixel (x, y) in the

image plane and time t. Assuming that there is no change in illumination, the brightness of

a particular point in the pattern remains constant. Hence, the total derivative of the image

intensity function must be zero at each position in the image at every time. This results in

the standard gradient formulation of the optical flow problem written as

g. _7+ h = 0 (23)
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where

(24)

and Ix, Iy and It are the spatial and temporal derivatives of the image I, and _7 = (u, v)

is the optical flow at position (x, y) and time t that the derivatives have been computed.

Because the constraint is formulated only in terms of the first derivative, image intensity is

implicitly approximated as a planar function.

The squared error function based on the derivative constraint can be written as

(25)

Linear Least-Squares Estimate (LLSE) of _7as a function of g and _ is computed by setting

the gradient of this equation to the zero vector:

aE(a) = 5= 6 (26)

where

(27)

The matrix M is always singular, since the solution is based on a planar approximation to

the image surface at a point and, therefore, suffers from the aperture problem. Eq. 23 only

places constraint on the velocity vector in the direction of g; that is, on the component of

flow in the direction of the gradient.
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In orderto eliminatethe singularityproblem,onecanassumethat the velocityvector

is constantin a local region.This canbedoneby writing anerror function basedon the

normalconstraintsfromeachpointwithin apatch,indexedbyasubscripti E {1, 2, 3,... n}:

i

(28)

Computing the gradient of this expression with respect to _7gives:

i

with solution

where

Mi = M (xi, Yi, t), _ = b(xi, Yi, t)

as in Eq. 27. Lucas and Kanade's approach [74] based on a Taylor series approximation

to the solution of a matching problem in the context of stereo vision results in a solution

identical to the equation 30. A weighting function wi is also included in the summation, in

order to emphasize the information closer to the center of the averaging region.

Although the above gradient-based method can provide estimates over a greater area

than those obtained by feature matching, there will be errors in the estimated flow due

to errors in the derivative computation, aliasing, imprecision in the derivative filters, etc.

Even if the derivative measurements are error-free, the constraint in Eq. 23 may fail to be
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satisfiedbecauseof changesin lightingor reflectance,or the presenceof multiplemotions.

Opticalflowcomputationcanbeviewedasanestimationproblemresultingin a probabilis-

tic frameworkthat allowstheseuncertaintiesto be representedin the computation[93].

Uncertaintiescomputedin the form of a covariancematrix can be usedas a weighting

functionin the interpretationstage.

Considerthetotal derivativeconstraintinEq. 23.Let 7]1and_/2beindependentadditive

Gaussiannoisetermsdescribingtheerrorsresultingfrom a failureof planarityassumption

anderrorsin the temporalderivativemeasurements.ThenEq. 23canbe rewrittenas

_.(ff-_) +It =_, _h_ N (0, Ei)

or

(31)

31 describes the conditional probability, V (It [ _,_).Eq.

probability can be written using the Bayes' rule as

The desired conditional

(32)

The prior distribution P (g) is chosen to be a zero-mean Gaussian with covariance Ep. The

mean tt_ and the covariance E_ may be derived using standard techniques [33]:

(33)
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If _1 is chosento beadiagonalmatrix with diagonalentryOl andthe scalarvarianceof _2

is (72- E2,then themeanandvarianceof the estimated optical flow can be written as

_t7 ----

_7

IIn II

LLII ÷

-1

(34)

Since the distribution is Ganssian, the Maximum Likelihood Estimation (MLE) is simply

the mean, p,7. The optical flow is computed at selected feature positions detected using a

feature detection algorithm described in the following section.

4.3.1 Feature Detection

Flow fields generated by existing algorithms are noisy and partially incorrect. Algorithms

for interpreting these fields fail under such conditions. Although gradient-based techniques

can produce a dense optical flow field, the estimated optical flow is not reliable at regions

of low contrast, since the gradient is small, and at edge points, due to the aperture effect.

But full optical flow can be determined at corners. Hence, we compute the optical flow

only at corner-like feature points, unlike the conventional optical flow algorithms, which

theoretically compute the optical flow at every pixel in the image plane. We do not use the

matching approach to compute the disparity; instead, a gradient-based method is applied

to the local region centered around the pixel.

Conventional feature-based methods for computing the optical flow identify distinct

2-D features on the image, then an inter-frame correspondence is performed to compute

the image disparity at each feature point. It has been shown that, at any given pixel,
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theoretically,the processof computingthe optical flowusingregionmatchingby Sumof

SquaredDifference(SSD)of imageintensityis identicalto computingtheopticalflowusing

a gradient-basedapproach.Opticaltiowmethodsproposedby Anandan[3]and Singh[94]

computeoptical flowusingregionmatchingapproaches.Theseapproachescanbe viewed

as feature-based.But, featuresare not explicitly identifiedusingany criterion suchas

variancemeasure,interestingnessor cornermeasureetc. Insteada local regionat every

pixel is identifiedasan interestingregion. In this work,weintegratedboth feature-based

andfield-basedapproaches.UnlikeAnandan'sapproach,wecomputedtheopticaltiowonly

at distinct featurepointswhereopticalflowcomputationisexpectedto bereliable.Instead

of region-basedmatching,weusethe gradient-basedapproachappliedto the local region

surroundingthe featurepoint.

Barnardand Thompson[9], in their stereodisparity analysis,usedpoints with high

variancein all four directionsasfeaturescomputedusingthe Moravecinterestoperator

[80]. Meygretand Thonnat [78]usedcontourchainpoints to computethe optical flow

usingmatching.Regionsof size11x 11pixelwith highvarianceareusedasfeaturesin [95]

to computerangeto scenepointsusinga Kalmanfilter-basedrecursiveapproach.Weused

the SUSAN(SmallestUnivalueSegmentAssimilatingNucleus)cornerdetectorproposedby

Smith [99].This corneroperatorhasdemonstratedbetter performancethanother corner

detectors[98],andhasalsobeenusedsuccessfullyto detectandtrack featuremotion [100].

A brief descriptionof the SUSANcornerdetectoris givenbelow.

SmithandBrady [98,100]haveuseda newapproachknownasthe SUSANprincipleto

locateedgesandcornersin an image.Considera rectangularbox,asshownin Fig. 26(a).

A circularmaskisshownat sevendifferentpositionsin the image.The centralpixelof the
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maskisknownasthenucleus.Theareaofthemaskhavingthesame(orsimilar)intensityas

theintensityof thenucleusisknownas"USAN" (UnivalueSegmentAssimilatingNucleus).

In Fig. 26(b), the USAN is shownin white. Note that the USANareais largestin the

uniformportionsof the image,smallerin the edgeareas,andsmallestnearthe cornersof

the image.Usingthis principle,onecanlocatetheedgesandcornersof an imageby taking

localminimaof USAN.Sincethe minimumis taken,the principleis knownasSUSANor

SmallestUnivalueSegmentAssimilatingNucleus.

The SUSANcornerdetectorwasappliedto videoimagesequencescapturedfrom an

aircraft. Fig. 27 showszoomedpart of frame number50 of the imagesequencerun-

way_crossing_new. The output of the corner detector is shown in Fig. 28. The detector

detects corner-like features wherever there is intensity variation in at least two directions.

It can be seen that not only do the features correspond to the moving truck, but extraneous

features such as tire-marks are detected by the corner detector.

4.3.2 Hierarchical Approach for Optical Flow Computation

The gradient-based approach for optical flow computation will fail if there is too much

spatiotemporal aliasing (i.e., if the displacement being measured is greater than one half

of a cycle of the highest spatial frequency present in the pre-filtered image sequence). In

the case of a feature-based approach, the matching process that must accommodate large

displacements can be very expensive to compute because of the large search space. Simple

intuition suggests that, if large displacements can be computed using low resolution image,

great savings in computation will be achieved. Higher resolution image can then be used

to improve the accuracy of the displacement estimate by incrementally estimating small
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(a)

(b)

Figure 26: SUSAN principle (a) Circular masks at different places on the image (b) USAN
shown in white color.
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Figure 27: Zoomed part of frame 50 in the image sequence runway_crossing_new.

Figure 28: Detected corner-like features superimposed on the zoomed part of frame 50 in

the image sequence runway_crossing_new.
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displacements. It can also be argued that it is not only efficient to ignore the high resolu-

tion image information when computing large displacements, it is, in fact, necessary to do

so. This is due to aliasing of high spatial frequency components undergoing large motion.

Aliasing is the source of false matches in correspondence solutions or (equivalently) local

minima in the objective function used for minimization in optical flow computation. Hence,

matching or minimization in a multi-resolution framework helps eliminate problems of this

type.

Hierarchical approaches have been used by various researchers in the past. Bergan et al.

[11] described a hierarchical estimation framework for the computation of different model-

based representations of motion information. Meygret and Thonnat [78] described an optical

flow estimation algorithm based on a multi-resolution technique for matching contour chain

points. A multi-grid approach for computing optical flow is described in [34]. Anandan [3]

used large-scale intensity images to obtain rough estimates of image motion, which were

then refined using intensity information at smaller scales. Optical flow is computed at every

pixel in the image using region-based matching. We compute the flow only at feature points

detected using the SUSAN corner detector in the high resolution image.

Fig. 29 describes the hierarchical optical flow computation framework used in this work.

The basic components of this framework are:

• pyramid construction,

• optical flow computation,

• image warping, and

There are a number of ways to construct the image pyramids [90]. We built a Gaussian
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Figure 29: Diagram of the hierarchical optical flow estimation framework

81



pyramid on each frame of the image sequence [18, 90]. The Gaussian pyramid is a sequence

of images in which each is a low-pass filtered copy of its predecessor. Let Ii be the ith frame

of the original image sequence; this becomes the bottom or zero level, L0 of the pyramid.

Let us represent this image as I°. Each pixel of the Gaussian pyramid image at the next

pyramid level L1, image I1, is obtained as a weighted average of pixels fxom /_/ within a

5 x 5 window. Each pixel of I2 at pyramid level L2 is then obtained by the same pattern of

weights from I_ at level L1. The sample distance is doubled at each level. As a result, each

image in the sequence is represented by an array which is half as large as its predecessor.

The process which generates each image from its predecessor is called a REDUCE operation,

since both resolution and sample density axe decreased. Let I ° be the original image and

let I N be the image at the top level N of the pyramid. Then for 0 < I g N we have

2 2

=  (m,n)I -li2 + m,23+ n) (35)
rn-----2 n-----2

The weighting function w is called the generating kernel which is separable, normalized, and

symmetric. The one dimensional kernel is given by w = [c b a b c] such that a + 2c = 2b.

¼ 1 .Combining these constraints we have: a = free variable, b = , and c -- 4 2"

Optical flow is computed using the gradient-based approach explained in the previous

section. This method requires a minimum of five image frames; optical flow is computed

for the center frame. Let Ii be the image frames used to compute the optical flow where

i -- 1,2,3,4,5. Initially, Gaussian pyramid images are computed for each frame. We

have computed a Gaussian pyramid up to 3 levels (Lo, L1,L2), where level L0 represents

the original image. Features are detected in frame/3 at level L0, and their positions are
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predictedfor levelL2. Optical flow is computed for each feature at level L2 using the

Gaussian pyramid images at that level. Let u_ be the optical flow computed for a feature

Fi at level L2.

The optical flow computed at level L2 and the feature position are upsampled to level

L1. Using the upsampled optical flow, the pyramid images at level L1 are warped. The

warping operation is defined as

I,_orped(X,_) = Io_g_,,a_(X--U(X,y),y --V(X,y)) (36)

However, warping is done only for a local region around the position defined by the above

relation. We use bilinear interpolation to evaluate the Ioriginal at fractional-pixel locations.

The optical flow is computed using the warped images, resulting in "optical flow correction"

1 The(fu_ to be composed with the original estimate, to give a new optical flow estimate u i .

optical flow at level L1 after correction is given by:

' = 2_ + z=_ (37)ui

The process of propagation of flow values and computation of flow correction is repeated

at each level of the pyramid until the flow fields are at the resolution of the original image

sequence.

We applied our multi-resolution optical flow computation algorithm on the image se-

quence runway_crossing_new. The Gaussian pyramid images and the optical flow obtained

using our hierarchical framework for this sequence are shown in Fig. 30.
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(a) (b)

(c)

Figure 30: Gaussian Pyramid images:

(d)Optical flow at Level0

_ _ .;. _. : .... -.. _..-__

(d)

(a)Level0 image (b)Levell image (c)Level2 image
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4.4 Motion-based Segmentation

Various approaches for motion estimation based on point or line features assume that the

features undergo similar motion or features belong to a single object in motion. Optical flow

computed using either the field-based or the feature-based approach computes the apparent

image motion without the knowledge of the type of motion or the number of objects in

the scene being viewed. Hence, before any estimation can be done using these optical flow

vectors, flow vectors belonging to different objects and the background need to be grouped

to identify image regions corresponding to the object/background.

In the context of obstacle detection, the problem would be to distinguish the obstacle

from the background. If the camera is also moving, then background motion will be the

dominant motion. If the camera motion and the model of the terrain in which the camera

is moving are available, image warping can be used to compensate for the ego-motion of the

camera and identify the obstacles. This is the approach taken in [20, 44, 115]. If nothing

is known about the camera motion, then optical flow vectors are grouped based on some

approximate motion model to form object hypothesis, as in [1]. The hypothesis is then

verified by computing the deviation of the actual optical flow from the hypothesized model

flow.

We use the motion model for segmenting the video image sequence where the background

(i.e., the runway, in our application) is assumed to be planar. This is an approximate model

used to hypothesize the background region. Even if the background is not perfectly planar,

a planar motion model is valid in situations where the ratio of the range to the scene point

to the variation in the range to other scene points is very small. As the camera approaches
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therunway,theplanarmotionassumptionmaynotbevalid. Westill usetheplanarmotion

model to segmentthe imageby assumingthat the backgroundis piecewiseplanar and

applyingthe planarmotionmodelto small local regionsseparately.In the next section,

wederivethe imagevelocityequationfor the planarmotion modelcaseand describean

algorithmfor recoveringmodelparametersusinga leastsquarefit method.

4.4.1 Planar Motion Model

The imaging geometry and various coordinate systems used in this analysis are shown in

Fig. 31. The earth reference coordinate axes Xe, Ye, andZe are rigidly affixed to the Earth

at an arbitrarily selected but known point (on the runway). The helicopter body axes

Xb, Yb, andZb are assumed to be located at the center of gravity of the helicopter, with the

Xb axis pointing forward and Zb axis pointing downward. The sensor coordinate system

axes Xs, Ys, andZ8 are attached to the sensor, with the axis Xs passing through the optical

axis of the sensor and originating at the focal point of the sensor. In this work, we use

"sensor coordinate system" and "camera coordinate system" interchangeably. The image

plane is located at a distance f from the focal point of the sensor, and is perpendicular to

the optical axis of the sensor.

Let (X, Y, Z) be the 3D coordinates of a stationary point P in the sensor coordinate

system. The projection of the point P in the image plane is given by

fY Z
x= A-2-' Y= f-2 (38)

where A is the aspect ratio. As the camera moves, the image point of P will also move.
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Figure 31: Imaging geometry
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Differentiatingthe aboveperspectiveequationwith respectto time, wehavethe image

velocity_7= (u, v)

ox x? - YX
u - = A.f

Ot X 2

oy xz - z._
v - Ot - f X 2 (39)

Let p = (X, Y, Z) be the position vector for the object point P in the sensor coordinate

system. If point P is assumed to be fixed in the Earth frame, the rate of change of p in the

camera's axes system can be determined using Coriolis' equation [72]:

?

2

-Vx

-vy

-yz

=-T-Rxp

IX

\

-Zwy + Ywz I

J-Xwz + Zwx

-Ywx + Xwy

(40)

where T = (Vx, Vy, Vz) and R = (wx, wY, wz) are the camera's translational and rotational

velocities.

Substituting for p in Eq. 39, we obtain a well-known optical flow equation which relates

the camera motion, object motion in the image, and object's range:

/Iv/TM)vt •(v (41)
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where

() (ut 1 x -Af 0

= -2 vy
vt y 0 -f

Vz

u_, Ay _ -f A(1 + ]r_)

S(l+ 
ody

WZ

(42)

As is evident from the above equation, optical flow can be decomposed into two com-

ponents - (ut, vt) due to translation, and (u_,v,,) due to rotation. Only the translational

component of the image velocity is a function of the range.

Let the point P be on a planar surface whose plane equation in the camera coordinate

system is given by:

klX + k2Y + k3Z = 1 (43)

Substituting for X and Y from the projective transformation equation, we have:

k x y 1
kl + 2_+k37= (44)

Substituting for the _ in the image velocity equation, we have the optical flow equation for

the planar motion case as:

u = al+a2x+a3y+aTx 2+aSxy

v = a4+asx+a6y+asy 2+aTxy (45)
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where

al = -AklfVy - f Awz

a2 = klVx-k2Vy

a3 = -k3AVy + Awx

a4 =

a5

a6 =

A A

klVx - kaVz

k2 Vx wz

a7 Af fA

k3Vx wy (46)as - f +7

From the above equation, it is clear that the instantaneous motion of a planar surface

undergoing rigid motion can be described as a second order function of image coordinates

involving eight parameters. The eight coefficients (al,... ,as) are functions of the motion

parameters and the the surface parameters. If the ego-motion parameters axe known, then

the three-parameter vector k can be used to represent the motion of the planar surface.

Otherwise the eight-parameter representation can be used. In either case, the flow field is

a linear function in the unknown parameters. Since our objective is to segment the image

based on structure and motion, we used the eight-parameter representation for the flow

field.

In the following sections we describe a least square fitting algorithm for recovering

the eight parameters from a set of optical flow vectors, followed by our new segmentation
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algorithmbasedon this approachfor segmentingmultiplemotionsfrom optical flowfield.

4.4.2 Recovering Model Parameter from Optical Flow

It is clear from the above analysis that each data point [i.e., optical flow (u, v) at pixel

(x, y)] results in two equations containing eight unknown parameters. Hence, at least four

points are required to solve for model parameters, assuming that all four points belong to

the same planar motion. If more than four points are available, then a Least Square Fit

can be used to compute the best model which fits all the points.

4.4.3 Least Square Model Fitting

Let (ui, vi) be the optical flow at pixel (xi, Yi). The image velocity equation can be written

as:

l Ui
vi

I 2

1 xi Yi 0 0 0 x i xiyi

0 0 0 1 xi Yi xiYi y2

ai=Xia

f

al

a2

a3

)°,
g5

a6

g7

as

(47)
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Theleastsquaresolutionfor computingthemotionmodelparametervector5 is givenby

a = (xTx)-IxT_ (48)

where

Ul

Vl

U2

V2

_= . ,2=

\Vn /

1 Xl Yl 0 0 0 x21 xlyl

0 0 0 1 xl Yl XlYl y21

1 X2 Y2 0 0 0 X22 x2Y2

0 0 0 1 x2 Y2 x2Y2 y_

1 Xn Yn 0 0 0 X2n XnYn

0 0 0 1 Xn Yn XnYn Y_n

If Eu is the covariance of the computed optical flow, the least square solution for 5 is given

by:

= (XTEulX)-lxT_ul_ (49)

where the covariance of the estimated motion model parameter is:

E a _--- (xTEulx) -1 (50)
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4.4.4 Detecting Outliers

If the optical flow computed is exactly equal to the expected 2-D projection of the actual 3-D

velocity, then the motion model parameters computed using the above least square method

will be accurate. Since the optical flow is computed using the gradient approach, based on

the flow constraint equation which is applied on the image locally, computed optical flow is

only approximately equal to the 2-D projection of 3-D velocity. In addition, the computed

optical flow will be noisy due to errors in computing the gradient, multiple motion, etc.

Data points with large errors or flow vectors due to a different motion, called the outliers,

can significantly bias the solution. Such points need to be identified and removed before

reliable estimation can be done.

Let (up(x, y), vp(x, y)) be the practical optical flow computed using the gradient-based

approach. Let _ be the estimated motion model parameters using all the data points

available. Then, the theoretical optical flow (ut(x, y), vt(x, y)) at (x, y) according to the

recovered model is given by:

_,(x,y) = a_+ 4x + 4y + _x 2+ 4xy

a I _ 2 a_Txyv,(_,y) = 4 + 4_ + 4y + sy + (51)

The deviation of the point from the estimated model is computed as the deviation of the

practical flow from the model (theoretical) flow given by the Mahalanobis distance:

d = (up - ut)_l(up - l_t) T (52)
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Points with d > dt are considered to be outliers, where dt is a threshold value decided

experimentally.

4.4.5 Algorithm for Recovery of Single Motion Model

From the above analysis, it is clear that under ideal situations where all flow vectors result

from a single planar surface motion, a least square fit approach can be easily used to recover

the motion model parameter. If there is no noise in the estimated optical flow the recovered

model parameter will be identical to the actual parameters. If noise in the optical flow is

small, then the least square estimate can provide a good estimate of the parameter vector.

If there are few data points with large errors, then these points can have significant effect

on the accuracy of the recovered model parameters. These noise data points, called the

outliers, need to be detected and removed systematically before reliable estimates can be

obtained. A simple iterative algorithm based on the least square fit method for recovering

the motion model from a set of N noisy flow vectors is described in the following four steps.

1. Compute the model parameter _ using N data points in the least square sense. Data

points include the coordinate of a pixel in the image plane (x, y) and the optical flow

(up, vp) computed at that pixel using the gradient-based approach described earlier.

2. For each data point, compute the theoretical optical flow (ut, vt) using the model

parameter _ computed in the previous stage.

3. Compute the Mahalanobis distance d between the practical flow and the theoretical

model flow. If d is above a threshold dr, consider the data point as an outlier, else

consider the point for refining the estimate in future iterations.
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. If there are no outliers detected in this iteration, the least square algorithm is said

to converge and the model parameter obtained in this iteration is the best model

parameter describing the planar surface motion. If one or more outliers are detected

in this iteration, ignore these data points and repeat steps 1 - 4 for the remaining

data points.

4.4.6 Segmentation and Estimation of Multiple Motion

The algorithm described above can be used only when a sufficient number of good points

are available. The least square fit algorithm fails if more than 50% of the data points are in

error, which is the actual breakdown point for a least square method. This can happen for

two reasons: 1) Majority of flow vectors, though axe resulting from a single planar surface in

motion, many of these vectors could be in error in addition to the few flow vectors resulting

from a differently moving object. 2) The data points come from different objects moving

in different directions. It is also possible that the scene may not be perfectly planar; thus,

the optical flow vectors computed using an optical flow algorithm, although correct, may

not follow the planar surface model.

In [20], the plane parameters were first computed by matching a portion of a previous

image containing the planar region to the current image. Model parameter thus recovered

was used to warp the second image to the first. The residual optical flow was then computed

using the warped image to detect obstacles. In [115], the runway was assumed to be planar.

Using the known camera motion and the plane parameters, images were warped and residual

flow was computed. Large residual flow vectors due to obstacles were removed. The residual

flow at other pixels was assumed to be caused by errors in the initial model parameter and
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was used to improve the model's accuracy. In [44], warping parameters were computed using

the known camera motion and plane parameters. Features were tracked by computing a

moving average of the optical flow. Pixels with large residual flow were detected as obstacles.

In this work, we considered a more general problem. We computed the model parameter

vector from the available flow vectors, and identified the outliers in the set of data points by

computing the deviation of the optical flow from the estimated motion model, as explained

earlier. We assumed that the dominant motion was due to the planar surface in motion,

and that the outliers were mainly due to obstacles. Our algorithm can be used for two

applications:

• By computing the dominant motion, obstacles are detected in the form of outliers. In

addition to detecting outliers, our algorithm also provides the motion model parameter

for the planar surface on which the object is moving.

• Planar motion model is a good assumption if the range to the scene is large compared

to the focal length. As the camera approaches the ground, however, the background

may not be perfectly planar, in which case piecewise planar assumption can be used.

Although Adiv's work had a similar objective [1], his study uses the afflne motion model

to describe motion at any point, and uses Hough space to detect the multiple motions.

Each optical flow vector votes to a set of bins in the six-parameter Hough space based

on the difference between the optical flow value computed using an optical flow algorithm

[53] and the theoretical optical flow expected for the model defined by the six parameter

values associated with the bin. All flow vectors from a single rigid object in motion are

expected to vote into the same bin, resulting in clusters in the Hough space, where each

96



clustercorrespondsto separatemovingobjects. The success of this method depends on the

knowledge about the range of values for each of the parameters and the resolution of the

parameter space. The higher the resolution, the more accurate the segmentation, although

computationally it is going to be very expensive. In [122], an adaptive Hough approach

is used where, initially, a low resolution Hough space is used. A higher resolution Hough

space is then derived around the clusters detected in the first Hough space.

4.4.7 Split and Merge Algorithm

We assume that the runway or the terrain in which the camera is moving is either planar

or is piecewise planar. We started by hypothesizing the runway to be perfectly planar, and

applied planar motion model to all of the available flow vectors. If the initial hypothesis

failed then we hypothesized the runway to be piecewise planar, and applied planar motion

models to each of the pieces separately. The outline of the algorithm is shown in the block

diagram in Fig. 32.

The algorithm starts with the hypothesis that all flow vectors belong to a single planar

surface. The model parameter is computed using the least square approach, and outliers

are detected by computing the deviation of each of the points from the computed model.

The model parameter is refined by iteratively removing the outliers from the initial set of

flow vectors. The algorithm is said to converge when no more outliers are detected. If

the algorithm converges with less than 50% outliers, then the computed plane parameter

represents the ego-motion of the camera and the structure of the background. Note that 54

1_, and k can be computed from _. The outliers are either due to noise or independently

moving objects. If the outliers are distributed randomly, they can be simply ignored. If the
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Figure 32: Split and merge algorithm
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optical flow vectors are close together, then they can be considered to belong to a single

object; a separate motion model parameters can be recovered from these sets of outliers.

If the least square fit algorithm converges with more than 50% outliers, then the so-

lution is completely dropped. The background/runway is assumed to be piecewise planar.

Piecewise planarity can be applied in two ways.

1. The algorithm can be applied to non-overlapping local regions of size N × N over the

entire image and model parameters can be computed for each of these local regions.

The regions can be then merged based on the spatial constraint and the merging error.

This is not practical in this study because it is not clear how the feature points are

distributed on the image plane and, therefore, local regions may not be well defined

or evenly distributed.

2. We follow the split and merge algorithm used for intensity image segmentation. In this

application, we split the image into four parts. The iterative least square algorithm

is applied independently to each region. Where necessary, the regions were split

recursively until the least square algorithm succeeds for a given region. Regions are

then merged if the error after merging is below a threshold.

4.4.8 Experimental Results

The motion-based segmentation algorithm for detection of obstacles based on the planar

motion model for the background/runway with the incorporation of the split and merge

technique is tested using both simulated and real image sequences. Fig. 33(a) shows frame

3 of an image sequence obtained using the NASA simulation software. Fig. 33(b) shows
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the featuresdetectedin frame3, and Fig. 33(c)showsthe optical flow computedfor the

featurepointsusingour hierarchicalframework.Fig. 33(d) showsflow vectorsviolating

theplanarmotionmodelconstraint,whichhavebeenidentifiedaspotentialobstacles.The

planecrossingthe runwayis veryclearlydetectedasanobstaclein the images.(Fewfalse

alarmsaredueto noisein the estimatedoptical flow.)

Fig.34(a)showsframe50oftherealimagesequencerunway_crossing_new obtained from

a camera mounted on-board a landing aircraft. Features detected in this image are shown

in Fig. 34(b). Fig 34(c) shows the computed optical flow using our optical flow algorithm,

and 34(d) shows the set of feature vectors identified as obstacles.

4.5 Performance Characterization

In this section, we evaluate the performance of our motion model recovery algorithm, as-

suming that the image contains a single planar surface in motion. The proposed system

for recovering the motion model parameters from a sequence of images contains two sub-

algorithms. First, optical flow is computed using the gradient-based optical flow method,

then these optical flow vectors are used to compute the planar motion model parameters.

Evaluation of the performance of this motion estimation algorithm requires determining the

performance of each of these sub-aigorithms.

Unlike the approach described in [47] for characterizing the computer vision algorithms

in terms of the six components of protocol (i.e., modeling, annotating, estimating, vali-

dating, propagating, and optimizing), we evaluate the algorithm in terms of the general

function for which it is being used. For example, the optical flow algorithms are developed

by applying the optical flow constraint equation within a local region. Thus, the ideal input
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Figure 33: Results obtained for a simulated landing image sequence: (a)Frame 3 of image

sequence Landing_normal_32L (b)Detected Features (c)Computed optical flow (d)Optical
flow vectors detected as due to obstacles
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Figure 34: Results obtained for a real image sequence: (a)Frame 60 of image sequence run-

way_crossing_new (b)Detected Features (c)Computed optical flow (d)Optical flow vectors
detected as due to obstacle
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to this algorithmrequiresgenerationof dataaccordingto the followingconstraintequation

within a localneighborhood.

,rxu+ = -xt (53)

where Ix, I v, and It are the spatial and temporal gradients computed using five or more

images. The output of the algorithm is the least square solution to the above equation within

the local region. Hence, according to [47], model inputs are gradient values with proper

noise models for error in gradient computation. The gradient masks for the computation

of gradient, and the local region size within which the constraint is applied, are the tuning

parameters of the algorithm.

Optical flow algorithms have never been evaluated by designing a protocol as suggested

in [47], partly because of the difficulty in creating the ideal data or proper modeling of

the noise functions associated with the derivative computation, or perhaps in annotating

or gathering a representative data set. The computation model underlying the algorithm

for optical flow involves assumptions about velocity smoothness, single motion, constant

illumination, etc., which are violated, to a large extent, in real imaging situations. Optical

flow is the apparent motion of brightness pattern in the image and is only approximately

equivalent to the 2-D projection of 3-D velocity.

Various optical flow algorithms were evaluated, and quantitative measures such as flow

density, mean, and standard deviations in error were reported in [10]. Unlike the approach

described in [47] for characterizing the computer vision algorithms, Barton et al. [10] do not

characterize the algorithms by selecting proper model for input, output, and perturbation in

input and output datasets. They used a set of image sequences to compare the performance,
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and used angular deviation between the computed and the true displacement vector as the

performance metric.

Our objective has been to evaluate the optical flow algorithm and motion estimation

algorithms together, in terms of their ability to recover the motion model parameter from

a given sequence of images. Hence, the input to this whole vision system is the sequence of

images which are input to the optical flow algorithm. The output of this system is motion

and structure parameters in the form of an eight-parameter vector ap and the covariance of

the estimated parameter vector Ea. To create the image sequences, we assumed that the

camera was moving in front of a planar surface with sinusoidal and square texture. Using

the known camera motion and plane parameter, we computed the actual (theoretical) planar

motion model parameter vector at and the theoretical optical flow (ut, vt) at every point on

the image. The optical flow algorithm computed the optical flow (up, vp) and the covariance

of the estimated optical flow _u.

We evaluated our optical flow algorithm using synthetic images of planar surfaces in

motion. Since the covariance of the estimated optical flow will be used as weighting function

in the segmentation stage, we feel that quantitative evaluation of the optical flow should

consider this weighting function. We use the Mahalanobis distance between the true optical

flow and the estimated optical flow as the performance measure, which is given by

E u = (Up - 7zt) _1 (Up - l_t) T (54)

Input to the algorithm will be image sequences obtained using a camera moving in front

of a planar surface. We used square and sinusoidal texture for the plane. A sequence of
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15 imageswasobtainedfor differentvelocitiesof the camera.Figures 35 and 36 show

frames 1, 5, 10, and 15 of a 15-frame image sequence simulating a camera moving with a

velocity of (15, 0, 0) in front of a planar surface, where the camera was at a height of 100

feet from the planar surface with an inclination of 60 ° with respect to the ground plane.

These image sequences were input to the optical flow algorithm. Using the planar motion

model and known camera geometry, a parametric form for optical flow was derived. Using

this parametric form, the theoretical optical flow was computed at pixels where practical

optical flow using the flow algorithm was available. The Mahalanobis distance Eu between

the theoretical optical flow and the practical optical flow at pixel (x, y) on the image plane

was computed.

Figures 37(a) and 38(a) show the probability distribution of pixels ni with error Eu(i)

as a percentage of the total number of available optical flow values N. Since Eu is a

continuous function, the Eu axis has been quantized at discrete intervals. Figures 37(b)

and 38(b) show the cumulative distribution of pixels with error Eu, where, at any point

Eu (i) along the X axis, the corresponding Y axis represents the total number of pixels with

Eu <_ Eu(i). These plots show the likely ratio of good points and the goodness of those

points in the form of Mahalanobis distance. Although the exact number of points may vary,

the distribution remains almost identical for different image sequences.

The second stage of our algorithm uses these optical flow vectors to recover the model

parameter. We consider the model recovery algorithm as a black box which receives sets of

optical flow vectors as input and outputs the model parameter that best fits the data points

input to the unit. The optical flow vectors were already grouped into bins of decreasing

accuracy in the earlier stage. These bins are input to the model recovery algorithm in
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steps;at everystep,a newsetof data is addedto theearlierset. Model recoveryis done

first, usingthe setof datapointswhicharemostaccurate.As eachnewsetof data points

is added,the performanceof the algorithmdegrades.Let the recoveredmodelparameter

at eachstep be givenby the vector fp, with covarianceof the estimationgiven by lea.

Let the theoreticalparametricmodelusingwhichthe imageswerecreatedbe fit. Weuse

the Mahalanobisdistancebetweenthe theoreticalandpracticalmodelparametersasthe

performancemetrics,asgivenby

Sa -_- (fp - ft) _a I (ap - at) T (55)

Figures 37(c) and 38(c) show the plot of variation of Ea with Eu.

4.6 Summary

In this section, we proposed a new motion-based segmentation algorithm for detecting

obstacles in a sequence of images obtained from a video camera mounted on-board a landing

aircraft. Unlike the PMMW images, images obtained using a video sensor are of high

resolution and high quality. Features like tire marks, runway markers, etc., are clearly

visible in these image sequences. Thus, a simple histogram-based thresholding based on

homogeneity assumptions cannot be used. We have assumed that the runway is perfectly

planar or is piecewise planar and used a planar motion model to group features of the

runway. Optical flow identifying objects of nonzero height with reference to the runway

plane - stationary or moving - violates the planar motion model; these are detected as

obstacles.
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(a) (b)

(c) (d)

Figure 35: Simulated images of planar surface in motion: (a)Frame 1 (b)Frame 5 (c)Frame

10 (d)Frame 15
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Figure 36: Simulated images of planar surface in motion: (a)Frame 1 (b)Frame 5 (c)Frame

10 (d)Frame 15
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To compute the optical flow, we proposed combining both feature-based and flow-based

approaches in a hierarchical framework. We computed the optical flow at corner-like feature

points, where the optical flow was expected to be more reliable, compared to regions of

uniform intensity and edge regions. Features are detected using the SUSAN corner detector,

and optical flow is computed using the Maximum Likelihood Estimate based on an optical

flow constraint equation applied to a small local region around the feature. Since the optical

flow due to ego-motion of the camera is large, we proposed a hierarchical approach using a

Gaussian pyramid for computing the optical flow. This makes our approach applicable to

general situations where ego-motion and structure of the background are unknown, unlike

warping approaches, which require prior knowledge about motion and structure to detect

obstacles by compensating for the ego-motion.

The motion-based segmentation algorithm proposed in this work was based on a planar

motion model. It starts by hypothesizing that every flow vector is due to a single planar

motion. Least square model fitting was used to compute the best model parameter for the

set of optical flow vectors computed in the previous stage. The hypothesis was verified by

computing the Mahalanobis distance between the computed optical flow and the estimated

model flow. Optical flow vectors not satisfying the estimated planar motion model were

identified as outliers and rejected. The model parameters were recomputed without the

outliers. If the initial hypothesis failed (too many outliers), the solution was dropped and

the image was split into four regions. The planar motion model was then applied to each

of the regions recursively. We tested our algorithm using both synthetic and real images.

In our proposed approach for obstacle detection by motion-based segmentation, in ad-

dition to segmentation by hypothesizing the background to be a planar surface we also
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computedthe motion and structure parameters in the form of an eight-parameter vector

5. Actual camera motion parameters and the plane parameter can be estimated from the

model parameter vector; however, computation can be done only to a scale factor. This is a

fundamental problem in any motion and structure estimation method that uses monocular

image sequences. If either the camera motion parameter or the plane parameter is known,

then the other parameter can be computed uniquely. For segmentation, however, estimation

of these parameters is not required.

Adiv's Hough-based approach had a similar objective; however, in his method, prior

knowledge of range of parameters was required to create the Hough space. The accuracy of

his approach depended on the resolution of the Hough space. Segmentation using the Hough

method is very time consuming. In general, to form a Hough space of six dimensions (Adiv

used affine model, and used only first order terms in the flow equations) with a resolution of

B bins in each dimension will require O (B6) memory space. Voting by N features into this

Hough space will require O (B6N) computer operation. To improve accuracy, resolution

needs to be increased, resulting in exponential growth both in required memory space and

run-time. Our algorithm requires formation of P x P matrix (where P -- 8, the dimension

of the parameter vector 5) using N features in O (N) time and computing the inverse of the

matrix using O (p3) run-time algorithms. (Note that, though X is a 2N x P matrix, matrix

xTx is of dimension P × P and can be computed directly without having to form matrix

X in only (_) (N) time.) The overall running time for recovery of motion model parameter

in one iteration is linear in number of features N. Detecting outliers in an iteration requires

only O (N) operations. Thus, detecting an obstacle by applying our algorithm to a group

of N features in K iterations takes only O (KN) computer operations.
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Thealgorithmwasableto detectanobstaclein a planarbackgroundby segmentingthe

dominantego-motionandidentifyingthe outlierswith respectto the ego-motion.If the

imagecontainstoomanyobjects,however,ouralgorithmmight fit a singlemotionmodelto

all the motionvectorsresultingfromsuchimagesequences.Splitting theimagecanlocalize

suchmotions,althoughtoo manysplitscouldresult in an insufficientnumberof features

to computethe motionmodelparametersreliably. Oneapproachmight be to usea high

resolutionHoughspacefor eachlocalregion,wheretherangeof theHoughspaceisdecided

by the modelparameterestimatedusingouralgorithm.

Densityof featurevectorsis alsocritical to the successof ouralgorithm. If the planar

surfaceis not textured,our optical flowalgorithmwill result in sparseflow vectors. The

performanceof the planarmotion modelrecoveryapproachwill degradeas the ratio of

potential outliers (pointsfrom the obstaclesaswell asnoisyflowvectors)to pointsfrom

the planarsurfaceincreases.Oneobvioussolutionis to usea conventionaloptical flow

algorithm,whichproducesdenseopticalflowvectors.

Wehavealsoevaluatedtheopticalflowalgorithmandthemotionmodelrecoverymethod

usingleastsquarefit. Sincethe objectiveof the approachis to recoverthe planarmotion

model from a sequenceof images,input imagesare createdusinga knownmodel and

recoveredmodelparametersarecomparedto the input modelparameter. Barron et al.

usedangulardeviationbetweenthe knownoptical flow and the computedoptical flow

as the performancemetric. We usedMahalanobisdistancebetweenthe true optical flow

and computedoptical flowasthe performancemeasure.Optical flow vectorsweresorted

basedon the Mahalanobisdistance.Theseoptical flow vectorswereusedto recoverthe

modelparameters.ModelparametersthusrecoveredwereevaluatedusingtheMahalanobis
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distance between the true model parameter and the recovered model parameters.
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5 Structure and Motion Estimation from Line Features

In the motion-based segmentation approach described in Section 4, optical flow is computed

at corner-like feature points. Based on the computed optical flow, feature points are sorted

as belonging to separate planar surfaces in motion by computing the planar motion model

in the form of an eight-parameter vector 5, then measuring the individual flow vector's

fitness to the model. The actual motion and structure parameters can be computed from

the model parameter vector 5. The motion and structure parameters include the relative

motion between the camera and the planar surface, and the plane parameters. In case of

monocular image sequences, the motion and structure parameters can be computed only

to a scale factor, because a camera moving with a velocity V in front of a planar surface

at distance d and a camera moving with a velocity kV in front of the planar surface at

distance kd, produces the same optical flow on the image plane, where k is a scale factor.

However, if one of the two data are available (i.e., camera motion or plane parameter), the

other parameter can be uniquely determined.

In this section, we propose a method for computing 3-D position and velocity using

line features. Most of the point features used in the previous experiments were due to

the texture created by the tire marks, and not to true physical corners. Line features are

due to the runway markers, and are prominent and robust. First, we propose a method

for computing the plane parameters from line features, assuming that the line features in

an image correspond to lines on a 3-D plane and that the camera motion is known. We

also propose an algorithm for estimating the position and velocity of 3-D objects using line

features, assuming the object is moving on a planar surface. Since the end points of a
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line cannotbe detectedreliably,weproposean approachfor matchingand tracking line

segmentsin imagesequences.

5.1 Estimation of Plane Parameters

Few methods for computing motion and structure using line features have been proposed

in the past [25, 37, 50, 68, 67, 103, 129, 133]. In general, a minimum of three views are

required to solve motion and structure problem using line features, unlike the two frames

required in case of point features. When the lines are on the same plane, however, two views

are sufficient [114]. We propose a new method for computing the plane parameter from line

features using the knowledge of the camera motion and assuming that line features result

from the 3-D lines on a single planar surface.

5.1.1 Analysis

Fig. 39 shows the imaging geometry used in this analysis. The world coordinate system

(WCS) is represented by the three mutually perpendicular axes X, Y, and Z. C and C _

are positions of the camera at two different time instants tl and t2. The camera coordinate

system (CCS) is fixed to the camera at the optical center and is represented by three axes

Xs, ]I8, and Zs, with Xs pointing in the direction of the optical axis of the camera. The

image plane is situated at a distance f, the focal length of the camera, from the optical

center, with axes x and y. L1 is a line on a planar surface whose equation in the WCS is

given by AX + BY + CZ + D = O. Let sl and s_ be the line segments in the image plane

corresponding to the line L1 with the camera center located at C and C' respectively. Let
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Z

Figure 39: Camera Geometry: sl and s_ are images of line L1 at two different time instants
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the equationsof the linesegmentsSl ands t in the image plane be

ax+by+c = 0

a_x+b_y+c = 0 (56)

The camera center C and the line segment sl form a plane P1, which intersects the plane P2

formed by the camera center C _ and the line segment s t at the 3D line L1. The equations

of these projecting planes in the respective CCS axe given by

(57)

Note that (a, b, c) and (a _, b_, c_) axe the normal to the planes P1 and P2, respectively,

in the respective CCS. If P_c and R_c axe the rotation vector from WCS to the CCS at C

and C _, then normal _1 and nt to the projection plane P1 and P2 in the WCS is given by

_l-[alblcl] T = p_l [a b c]T

nl =- [al b_ cl] T = R_-_ [a' b' c'] T (58)

These two planes intersect to form the line L1 in the WCS. The direction vector of this line

is given by the cross product of 61 and fit:

L1 - [blcl - b_cl, a_cl - alc i, alb i -blal] T (59)
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Theequationof the planeP3 normal to L1 is:

(blCtl -- blcl) X + (allCl -- ale1) Y + (alb_ - blab) Z + t = O; (60)

where t is a constant. The planes P1, P2, and Pa intersect along the line L1 whose equation

is given by

albicll/X//1a i bi c'1 Y = d2

bl_ - b'lCl a'lc 1 -alc' 1 alb' 1 - bla' 1 Z t

Ixll[A] y = d2

Z t

Ix/[1/{x//z/Y = A-1 d2 = Yi + m t

Z t Zi n

(61)

where (Xi, Yi, Zi) is a point on the line L1, (l, m, n) is the direction vector of the line, and t

is a constant. From corresponding line segments sl and s t in two frames, we can compute

the line segment L1. If L1 and L2 are two lines in the same 3-D plane with the equation

Ix//xi//zi/Li = y = l_ + mi t

Z Zi ni

(62)
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where i = 1, 2, then the normal to the plane is given by:

A = mln2 -- r122nl

B = 12nl -lln2

C = llm2-12ml (63)

This will fail if the two lines in 3-D are parallel. This can be solved by considering a line

connecting two points (X1, Y1, Z1) on L1 and a point (X2, ]I2, Z2) on L2. Then the

normal to the plane is given by:

A : ml(Z2 - Zl) - hi(Y2 - Yl)

B = 721(X2 - Xl) - _l(Z2 - Zl)

C : It(Y2 -- Yl) - ml(X2 - Xl)

D = (X2 - X1)(nlY1 - mlZl) + (}'2 - Y1)(Zlll - niX1) + (Z2 - Z1)(mlX1 - llY1)

(64)

5.1.2 Feature Detection and Matching

The above approach requires a minimum of two line correspondences in two frames. In

this work, we used line features resulting from the runway markers, since they are long,

easy to detect, and can be easily traz&ed. First, edges were detected by applying the

Canny edge detector to the input image sequence [19]. To detect the straight lines from

the edge image, we used the software package Object Recognition Toolkit (ORT) developed

by Etemadi et al. [35]. This software package takes an input edge image and reports the
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detectedstraight line segments,circulararcs,and variousjunction betweenlines,suchas

theT andY junctions.In ourapplication,wewereinterestedonlyin straightlinesegments.

Eachline wasrepresentedby severalparametersincludingthe two endpoints,mid-point,

length,orientation,the variancein lengthandorientation,etc. Edgeimagesobtainedfor

frames50and55of the imagesequencerunway_crossing_new using the Canny edge detector

are shown in Fig. 40(a) and Fig. 40(b), and the line segments detected by applying the ORT

software to the edge image are shown in Fig. 40(c) and Fig. 40(d). Noisy line segments due

to tire marks and other small line segments were later ignored by using a proper threshold

on the length of the line segments.

The next step was to use proper representation for each line segment and develop a

method for matching line segments in the current frame fl to the line segments in the

next frame f2 using the representation. It is clear from Fig. 40 that the endpoints and the

midpoints which were commonly used in tracking line features were unreliable because the

segments can be broken from one frame to another, and that endpoints and midpoints were

not located in the image plane and so could not be detected. Therefore, we use the normal

representation of line given by the equation:

x cosO + y sin8 = p (65)

where p is the perpendicular distance from the origin to the line, and 0 is the angle of the line

with respect to the x axis. This representation was used in the detection of line segments

using the Hough transform [45] by grouping collinear points of an edge image in the (p, 0)

parameter space. According to this representation, a straight line in (x, y) space becomes
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Figure 40: Canny edge image: (a)Frame 50 (b)Frame 55.

ORT software: (c)Frame 50 (d)Frame 55.

(d)

Line Segments detected using
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a point in the (p,0) space. Except for collinear lines, each line segment in (x, y) space

corresponds to a unique point in the (p, 0) space. If the (p, 0) parameter space is quantized

at N regular intervals in each of the two dimensions, then searching for a matching line

is equivalent to searching the bin corresponding to the normal parameter (i.e., p and 0) of

the given line. Based on the normal representation for line segments, we have developed a

three-stage algorithm to find a best match s_ in frame f2 for a line segment si in frame fl:

P in frame f2,• Compute the prediction s i

• Search for initial matches using Hough space, and

• Find the best match among the initial matches.

The position of a line segment si in frame f2 was predicted by assuming the position

of every pixel along the line by computing the optical flow at those pixels. A least square

approach was then used to fit a best line to the predicted positions. Since full optical flow

cannot be computed at edge pixels, we computed only the normal flow (i.e., the optical

flow in the direction of the gradient) at every pixel along the line segment. Normal flow

computation was sufficient for this application, since we were interested only in matching

the line segments, and not the whole line. Thus, the motion of the line in the direction of the

line segment was not required. In addition, normal flow could be computed more accurately

than full flow, since computation of normal flow does not need additional assumption such

as the smoothness constraint used in the computation of full optical flow. Normal flow

at any pixel (x, y) in the image plane can be computed immediately from the optical flow
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Figure 41: Predicting the line in the next flame using normal flow

constraint equation as:

It (66)

where Iz, Iy, and It are spatial and temporal gradients. Using the computed normal flow at

every pixel along the line segment si in frame fl, the pixel positions for the corresponding

line s_ in the next frame can be predicted as shown in Fig. 41. A best line was then fit to

the predicted pixel positions in frame f2 to compute the predicted line segment sip [33].

Predicted line sip is only an approximation to the actual line segment s} in frame f2.

However, the prediction can be used to minimize our search for the best match in frame

f2. To search for possible candidates for matching, we first map every line segment from

frame f2 to a N x N Hough space. Each line segment detected in frame f2 votes to a

separate bin in the two-dimensional Hough space, based on the p and 0 values of the line

segment. Hough parameters are also computed for the predicted line segment sip. Under

ideal conditions, when there is no noise, the predicted line segment sip will be aligned with

the actual matching line segment s_ in f2 and, hence, wil]_map to the correct bin. However,
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dueto error in theprocessof edgedetection,linedetection,normalflowcomputation,line

fitting, etc., thepredictedlineparametermaynotbeexactlyequalto that of the actualline

segmentfoundin framef2. Hence, a search space of 3 x 3 around the predicted parameter

in the Hough space was used to find the matching line segment as shown in Fig. 42(a).

Sometimes multiple matches could be found within the search region. Another stage of

filtering might be necessary to find the best match.

If multiple matches were detected, a best match was found by computing the spatial

proximity of the predicted line to the actual line segment, as shown in Fig. 42(b). Per-

pendicular distances from the the endpoints of the predicted line to the each of the line

segments matched in the Hough space were computed. If (xp, yp) and (Xq, yq) are the end-

points of the predicted line, and aix + biy + ci -- 0 is the equation of the ith matched line

using the Hough space, the distance measure for the ith matched line is computed as:

di = d +dq

aixp + biyp + ci + aix a + biyq + ai (67)

The line segment s_ with minimum distance di is selected as the best match.

5.1.3 Discussion

We tested our proposed approach for computing the plane parameter for the runway us-

ing the line features due to the runway markers and known camera motion. A real image

sequence, runway_crossing_new, was used in this experiment. Using this sequence, we con-

ducted two tests to explore the feasibility of the proposed approach. In the first test, we
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Figure 42: Matching line segments: (a)Initial match: A 3 x 3 search region is used around

the predicted parameter value in the hough space. (b)Final match: Perpendicular distance

at the two end points are computed
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used the line segments resulting from the runway markers; in the second test, we used the

line features resulting from the taxiway. Although line features could be matched accu-

rately, the computed plane parameters were not correct. Failure of the proposed approach

can be attributed to either the degenerating case arising from the actual imaging geometry

when the camera is moving in the direction of the 3-D line, or the inability to resolve a

small angle between the projecting planes when the direction of motion of the camera is at

90 ° to the 3-D line.

Consider a situation where an aircraft is flying at a height of 5Oft and approaching for

landing at an angle of 3° to the runway. In this situation, the runway markers - - which

are in the direction of the optical axis of the camera - - are almost parallel to the camera

motion. The projecting planes P1 and P_ due to the 3-D line L1 and its corresponding image

segment sl and s t at two positions of the camera C and C I are almost aligned. Therefore,

normals to these planes are identical, resulting in a degenerate case.

The best line features to consider were those that were at 90 ° to the direction of camera

motion. In the above landing situation, the range to the aim point is _ 950ft. Without

loss of generality, we assume a cross runway at a range of 300ft. from the current position

of the aircraft, and the velocity of the aircraft 60ft/sec in the direction of motion. Our

aim is to find the angle between the projecting planes resulting from the edge of the cross

runway at two different camera positions.

To make the worst case analysis, we will consider two frames that are one second apart.

From simple trigonometry, we can show that, when the aircraft is at a height of 50ft,

the projecting plane due to the cross runway is at an angle of _ 9.5 ° to the runway plane

intersecting the runway plane 300ft from the aircraft. After 1 second the same cross runway
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will be_ 240ft from theaircraft,andtheprojectingplanedueto the crossrunwaywill be

at an angleof _ 11.1° to the runwayplane.This meansthat the twoprojectingplanesP1

and P_ 30 frames apart resulting from a 3-D line L1 at a range of 300ft from the initial

position of the aircraft on a planar runway are at an angle of only 1.6 ° to each other. It

is quite impossible to resolve this angle with all the error in line detection, optical flow

computation, etc.

5.2 Estimation of 3D Position and Velocity

Although image regions due to moving objects can be detected using the motion-based

segmentation algorithm described in Section 3, estimating the position and velocity of such

objects using a monocular image sequence is still an ill-posed problem. If the motion of

the camera is known and the object is stationary, the position of the object in 3-D can

be computed using motion stereo. The range estimation algorithms for estimating the

distance to static objects using monocular image sequence, described in [108, 109, 110] use

motion stereo to compute the initial range to the object. This initial value is used to start

a Kalman filter, which recursively refined the estimate by including the new observations

obtained by tracking the object in subsequent frames. If both the camera and the object

are in motion, then the solution for position and velocity of the object is not unique - - even

when the position and velocity of the camera are known accurately. Two possible solutions

to this problem are either to apply certain constraints on the object motion (constraint-based

solution) or to use stereo image sequences (binocular stereo or trinocular stereo).

In the constraint-based solution approach, the object is assumed to be moving on a

known terrain (i.e., X = f(Y, Z)). Hence, the range, X, to the object is known, and the
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object's velocity in the direction of range is constrained by the equation:

yx = fv (Y,z) yv + fz (Y,z) yz

where fy and fz are the partial derivatives of f (Y, Z) and Vx, Vy, and Vz are the X, Y,

and Z components for the velocity vector. Since X and Vx are constrained, the position

and velocity of the object in 3-D can be uniquely computed using two frames and a Kalman

filter similar to those described in [108, 120] can be used to refine the estimate by tracking

image features in subsequent frames.

The stereo method uses two or more cameras and computes the range to the object

by triangulation of corresponding image points in two frames. A Kalman filter can be

initialized with the position and velocity estimate obtained from the initial frames. The

estimate can be refined by considering additional measurements obtained by tracking the

features in subsequent frames.

In this research, we use the constraint-based solution approach. We assume that the

object is moving on a planar surface. Given the camera's motion and the feature locations

in successive images, estimation of the motion parameters of the tracked object can be

formulated as a state estimation problem using a Kalman filter. The position and velocity

of the camera are known from the GPS and INS, and the initial estimate of the plane

parameter is available from the motion-based segmentation algorithm described in Section 4

or the line-based estimation approach described in Section 5.1. The Kalman filter improves

the initial estimate by combining the redundant measurements obtained by tracking the

features in subsequent frames. The modeling of the motion kinetics and the derivation of
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the Kalmanfilter basedon the modelaredescribedin the followingsection.

5.2.1 Analysis

Weassumethat theobject ismovingona planarsurface.Themotionof theobject in the

3-Dspaceis purelytranslationalwith constantvelocityV = (Vx, Vy, Vz) and the equation

of the plane is nxX + nyY + nzZ + d = O. The velocity, Vx, in the direction of range is

given as:

-nyVy - nzVz
Vx = (68)

nx

The equation of the plane in the camera coordinate system is given by:

klX + k2Y + k3Z = 1 (69)

Plane parameter k = [kl k2 k3] in the CCS can be computed as:

Rn

= - _ (70)
T.5+d

where T is the translation of the camera and R is the rotation matrix of the camera at time

tl with respect to the origin of the WCS and is given as:

/RllR1R13/"T : Ty , R = R21 R22 R23 (71)

TZ R31 /{32 /{33

Let (X, Y, Z) be the coordinates of a point P on the object at time tl in the camera
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coordinate system (CCS). The image coordinate of the point at tl is given as:

Z
x = fY; y = f_ (72)

The coordinate of the same point at time t2 (t2 = tl + "r, where T is the time interval

between the two consecutive frames) in the CCS is given by:

ix//rllr12r13//x//tx Y' = r21 r22 r23 Y + ty "rV_.

Z' r31 r32 r33 Z tz TV_.

(73)

where [tx, ty, tz] T is the translation of the camera in CCS at time tl. The velocity vector

V' = [V_, V_., V_] T for the object at time tl in the CCS is given by _" = rV. The image

coordinates of the point at time t2 is given by:

(r21X + r22Y + r23Z) + (Ty - TV_.)

x' = f (r11X + r12Y + r13Z) + (Tx, T Yf[ )

(r31X + r32Y + rzzZ) + (Tz - rV_)
y' = /

(rllX + r12Y + r13Z) + (Tx - TV_ )
(74)

Substituting from 69 and 72 in equation 74 we get

all + a2x + a3y
X I =

aTf + asx + a9y

yl = a4f +abx + a6y
aT] + asx + a9y

(75)
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where

al ---r21+ (Tr - TV_)kl, a2 = r_ + (Tr - TV_)k2, a3= r_3+ (Ty - _V_)k3

a4 = r31 4- (Tz - TVz) kl, a5 --- r32 + (Tz - zVk) k2, a6 = r33 + (Tz - TVk) k3

(76)

Defining the state vector S = (nx nr nz Vy Vz) and the measurement vector M =

(ml m2) = (x y), the state equation and measurement equation in discrete time system can

be expressed as:

= CkSk + wk

= m(&)+vk

= [m_(&),-_2(Sk)]+ _k (77)

where the state transition matrix Ok is a Unity matrix, and Wk and Vk are the process

and measurement noise respectively. Zero mean Gaussian noise is assumed, such that

Wk "_ N(O, Qk) and vk _ N(O, Rk). It is clear from Eq. 75 that the measurement equation

is a nonlinear function of the state vector. An extended Kalman filter is thus necessary.

The measurement equation is linearized about the current estimate of S giving:

_- + (78)
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where

am (S) s=_;- o,

( "__j.

= Onx Ony

Onx Onr
-_z _ _ ) s=_E

o½ ovz

OWz

(79)

The Kalman filter consists of two parts.

1. Measurement Update: The measurement update is done whenever a new measurement

is available. Prior to processing a new measurement Mk, we have the estimated value

of the state S and the covariance of the estimate P (k), Q (k) and R (k). The new

measurement improves our estimate of the state and its covariance. The updated

values are

(80)

where the Kalman filter gain Kk is computed as

(81)

2. Time Update: This part of the filter accounts for the system dynamics, and propa-

gates the state and its covariance matrix until the next measurement is made. The
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propagatedvaluesare:

(82)

Starting from Eq. 81, the Kalman filter will run recursively as new measurements are

available. The initial estimate for fi is provided by the segmentation algorithm, and the

estimate for V is computed by triangulation on the first two frames using the Eq. 75.

5.2.2 Experimental Results

We tested the above tracking and estimation algorithm using the real image sequence run-

way_crossing_new. We used the line features in this experiment. Line features in the image

are tracked using their two endpoints. The matching algorithm described in Section 5.1

was used to match the line segments in successive frames. Separate Kalman filter is used to

track each of the endpoint of a line. Figures 43(a) and 43(b) shows the zoomed portion of

the frames 50 and 51 of the original image sequence containing the truck. Figures 43(c) and

43(d) shows the edge image obtained using the Canny edge detector, and Figures 43(e) and

43(f) shows the ORT software output, with the endpoints of the lines clearly marked on

the image. Line segments were tracked using the matching algorithm described in section

5.1.2. The Kalman filter did not converge to the proper value for the motion and struc-

ture parameter. This is because line segments were broken from frame to frame, and their

endpoints could not localized. Hence estimates done using the endpoints were not correct.
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Figure 43: Tracking line segments: (a), (b) Zoomed portion of the original image containing

the truck; (c), (d) canny edge image; (e), (f) ORT software output
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5.3 Summary

In this section,weexploredthe feasibilityof usinglinefeaturesfor estimatingthe motion

and structureparametersfrom imagesequencesobtainedfrom a singlemovingcamera.

Linefeaturesareprominent,andareexpectedto bemorereliablethanpoint features.Line

featuresdueto runwaymarkersor otherman-madetextureson therunwaycanbeusedto

estimatetheplaneparameterof the planarrunway.However,dueto a verysmallangleof

separationbetweentheprojectingplanesformedbythelinesegmentsandthecorresponding

runwaymarkers,anderror in localizingthe imagefeaturesthe planeparametercouldnot

be recoveredreliablyfor this application.

Estimatingthe motionof anobjectfrom a monocularimagesequenceobtainedfrom a

movingcameraisa ill-conditionedproblem.In this section,weproposesolvingthisproblem

usinga constraint-basedsolutionapproach,whereweassumethat theobjectismovingona

planarsurfaceandthat themotionof thecameraisknown.Wehavederiveda Kalmanfilter

for computingthe planeparameterandthe velocityof the object simultaneously.Either

point or linefeaturescanbeusedto estimatethemotionandstructure.Weproposedusing

linefeatures.Wetrackedthelinefeaturesusingtheendpoints.Dueto difficulty in matching

the endpoints,wewerenot ableto getgoodresults.

Wealsodescribedalgorithmsfor matchingline segmentsusingnormalrepresentation.

We followthe predict-and-matchparadigm,wherethe line segmentis first predictedby

computingthe normal flow for the line segment.Matchingis donein two stages: first,

approximatematchesare foundby searchingthe Houghspace,and then a fine matchis

performedby usingtheminimumdistanceconstraint.
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6 Conclusions

The ability to detect obstacles in a sequence of images is an essential first step in automation

of low altitude flight, landing, takeoff, and taxiing phases of aircraft navigation. In this

research, we explored the feasibility of computer vision algorithms for detecting obstacles

in monocular image sequences obtained by on-board sensors of two different modalities -

a low-resolution PMMW sensor and a conventional video sensor - for incorporation into

an aircraft-based Synthetic Vision System (SVS). Using this information and various other

data, SVS can complement the ground-based systems in various functions such as runway

incursion, and obstacle detection and avoidance.

To facilitate seeing through fog, the SVS is envisioned to be equipped with a PMMW

sensor. Because of the low resolution and poor quality of the images obtained using these

sensors, we proposed and implemented a model-based recognition approach for detecting

image regions corresponding to the runway. A histogram-based thresholding approach was

then applied within the runway region for detecting obstacles. To detect obstacles in video

image sequences, we proposed and implemented a new motion-based segmentation algo-

rithm. This included a novel combination of feature-based and flow-based approaches

within a hierarchical multi-resolution frame work for computing the optical flow, where

a gradient-based approach is applied over a small local region around corner-like features.

These optical flow vectors are then grouped into different regions by recursively applying

the planar motion model on image regions.

Though the main objective of the research was obstacle detection, we also focussed on

such other issues as estimating camera position from image-based features and improving
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camerapositioninformationusingmultiplefeatures.This is useful,sincethe cameraposi-

tion informationavailablefrom the GPSis not accurateandthe frequencyintervalof the

data is not sufficientfor manyproblemsolvingmethodsin computervision.

Wehavealso explored the use of line features for estimating the motion and structure

from monocular image sequences. We have described an algorithm for computing the plane

parameter using only line features. Line features due to the runway markers are used.

At least two line segments in two frames and knowledge of camera motion parameters are

required to compute the plane parameter for the runway. A Kalman filter based recursive

algorithm for estimating the motion of an object using point or line features contained

within the obstacle region is described.

6.1 Primary Contribution

• Computation of reliable optical flow has been always a difficult task. In this work,

we proposed a selective, gradient-based approach to be used at points where the

computation of optical flow is expected to be more reliable. This differs from the

conventional optical flow algorithm where, theoretically, optical flow is computed at

every pixel. Inclusion of too much noisy optical flow would result in large errors in

the interpretation stage. Preselecting the reliable data points in advance would not

only improve the performance of future computational procedures, but would also

improve the execution time of both the optical flow computation algorithm and the

interpretation algorithm.

• Field-based approaches fail if the optical flow to be computed is large. In many real

life applications, such as aircraft navigation, road navigation, etc., ego-motion of the
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sensorresultsin largeopticalflow. Although feature-basedapproachescanmeasure

largeoptical flow, they arecomputationallyveryexpensivedue to the largesearch

space.Weproposeusingourselective,gradient-basedapproachwithin a hierarchical

framework,and usingthe Gaussianpyramidto computelargeego-motion.Optical

flowcomputedat lowerresolutionis predictedto higherresolution,and a corrective

flow iscomputedand addedto theoriginalflow.

• Weproposeda newrecursivemotion-basedsegmentationalgorithmwhich couldbe

usedto recoverbothsingleandmultiplemotion. In casesof singlemotion,the algo-

rithm cantoleratelargererror in the opticalflowby splitting the imageinto smaller

regions,thendetectingtheoutlierswithin eachregionseparately.In casesof multiple

motions,the proposedframeworkhypothesizeseachmotionto followaplanarmotion

modelandusesthe split andmergeapproachto hypothesizeandverify theseregions.

The Houghmethodfor multiple motion segmentationrequiresprior knowledgeof

the rangeof the modelparameters,andthe accuracyof the methoddependson the

resolutionof the Houghspace.Thewarpingprocedurerequirescompleteknowledge

of cameramotionand theterrain in whichthe camerais moving. Wedid not make

anyassumptionsaboutthecameramotion.Weonly madeuseof planarmotionmodel

to hypothesizetheflow vectorsasbelongingto oneor moreregion,andverifiedthe

accuracyof the hypothesesby comparingthedeviationof the computedoptical flow

from that of the hypothesizedmodelflow.

• Our motion-basedsegmentationapproachfor detectingmultiple motionsand esti-

matingthemotionandstructureparameterin termsof planarsurfacemotionmodel
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parameteris computationallymoreefficientthan the Hough-basedapproach.In gen-

eral, to form a Houghspaceof six dimensionswith a resolutionof B bins in each

dimension, will require O (B6) memory space. Voting by N features into this Hough

space will require O (B6N) computer operation. In general, using our algorithm to

segment multiple motions by applying the least square model fit approach recursively

on a group of N features in K iterations takes only O (KN) computer operations.

• An analytical model for computing the error in camera position estimated using image-

based features has been developed as was a set of equations for computing the error in

various camera parameters. A new algorithmic approach to calibrate cameras using

image-based features is described in this report.

• We have proposed using the Mahalanobis distance as the measure for evaluating the

performance of the optical flow algorithm, unlike earlier approaches, which simply

compute the density, average error, and the standard deviation to measure perfor-

mance. Since the theoretical models used for computing the optical flow (optical flow

constraint with local smoothness model) differ from the one used in the interpretation

stage (planar motion model), we have proposed a new performance characterization

which relates the error in estimated optical flow to the error in recovered parameters

using these optical flow vectors.

6.2 Future Research

In this report we developed algorithms for processing images from PMMW sensors and

video sensors separately. An interesting problem, which has applications, both in robotics
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and navigation,is integrationof informationfrom differentsensors.

two ways:

This can be done in

• First, images from different sensors could be fused into a single composite image, then

the fused image could be processed for detection of obstacles and other objects of

interest.

• First, a different class of algorithms could be used to process and extract information

from each of the sensor images, then the extracted information could be fused.

Such a multi-sensor system can essentially improve the resolution and thereby improve

the performance of the segmentation and estimation algorithm. This will also avoid the

necessity for switching between the sensors, depending on the lighting and the weather

condition.

In this work, we have used only monocular image sequences. It is widely known that it is

impossible to estimate the position and velocity of a moving object obtained from a moving

camera unless additional constraints (shape and size of the object, terrain information in

which the object is moving, etc.) are provided. Use of stereo, however, can provide unique

solution. Stereo image processing poses additional problems, such as stereo correspondence,

wide enough base distance, etc. More research would be required to use the stereo images

for this application.

Finally, there are real time implementation issues. We have evaluated some of the

on-the-shelf image processing hardware for implementation into our model-based object

detection in PMMW image sequences. Computer vision and image processing problems are

computationally intensive. There are two ways to speed up the computation. The first is
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to build analgorithm-specificarchitecture,whichwouldrequireanalysisof the algorithms

anddevelopmentof data-flowarchitecturesuitablefor theapplication.The secondmethod

is to split thecomputationamongnetworkedworkstationsor on a multiprocessor system.
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